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Abstract

The Spohnian paradigm of ranking functions is in many respects like an order-of-magnitude reverse of subjective probability
theory. Unlike probabilities, however, ranking functions are only indirectly—via a pointwise ranking function on the underlying
set of possibilitiesW—defined on a field of propositiond over W. This research note shows under which conditions ranking
functions on a field of propositiond over W and rankings on a languagdeare induced by pointwise ranking functions hand
the set of models fof, Mod, respectively.
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1. Introduction: Pointwise ranking functions

The Spohnian paradigm of ranking functions [16,17] is in many respects like an order-of-magnitude reverse of
subjective probability theory [9]. “Ranks represent degrees"—or rathades—-of disbelief” ([19]: 6). Whereas a
high probability indicates a high degree of belief, a high rank indicates a high grade of disbelief.

There are many parallels between probability theory and ranking theory [16,18], and in Footnote 22 of his [16]
Spohn “wonder[s] how far the mathematical analogy [of his ranking functions to probabilities] could be extend-
ed”! The starting point of this paper is one of the few places where ranking theory differs from subjective probability
theory as well as qualitative-logical approaches to the representation of epistemic states such as entrenchment orc
ings in belief revision theory: the domain on which these models are defined, that is, what they take to be the object
of belief.

Unlike probabilities, ranking functions are only indirectly—via a pointwise ranking function on a non-empty set of
possibilities (possible worlds, model®)—defined on some finitaryt/complete field4 over W, i.e., a set of subsets
of W containing the empty set and closed under complementation and finite/countable/arbitrary intersections. Let u
have a closer look.

E-mail address: franz@caltech.edu (F. Huber).
1 Ranking theory is very similar to possibility theory [5], and it would be highly desirable to know to what extent the results below also hold for
possibility measures. Unfortunately this goes beyond the scope of this research note.
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A function « from W into the set of natural numberg is apointwise ranking function on W iff «(w) = 0 for at
least onw € W. A pointwise ranking functior : W — N is extended to a functiop, on a field.A over W with range
N U {oo} by defining, for eacht € A,

min{k (w): w € A}, if A+#0,

QK(A)z{oo, if A=0.

As will be seen below, it is useful to allow that some possibidity: W is sent tooco, which amounts ta being a
“virtually impossible possibility” (according te). In order to distinguish the more restricted notion of a pointwise
ranking function as defined above from the more liberal one allowing for virtually impossible possibilities, let us call
the formematural pointwise ranking functions (because the range of restricted to the set of natural numbafs

Pointwise ranking functions are functions defined on a non-empty set of possibilitiethat take natural numbers
or oo as values. They are extended to functippon a field.A over W by stipulating that the rank of any non-empty
propositionA € A equals the minimum rank of the possibilitiesdni.e., o, (A) = min{x (w): @ € A}, and the empty
proposition is sent tec.

In caseW is a finite set of possibilities and its powerset, every possibility corresponds to a proposition (viz.
the singleton containing it). But already whévi is the set of all model$lod, for a propositional languagg€
with infinitely many propositional variables andl is the field{Mod(e) € W: « € L}, no possibility corresponds to
a proposition. Furthermore, one has to specify a ranking over uncountably many possibilities in order to assign a
positive finite rank to a single proposition. But clearly, we often have a definite opinion about a single proposition
(represented in terms of a sentence) even if we do not have an idea of what the underlying set of possibilities looks
like—let alone what our ranking over these possibilities might be. For instance, | strongly disbelieve that one can buy
a bottle of Schilcher for less than 1 Euro, though | lack the relevant enological vocabulary in order to know what
all the possibilities are. Indeed, it seems the underlying set of possibditiesd not matter for my disbelief in this
proposition.

More generally, we should be able to theorize about our epistemic states even if all we are given is a ranking
over the sentences or propositions of some language or field, and we have no ranking over the underlying set o
possibilities. After all, what we as ordinary or scientific believers do have are plenty of beliefs and grades of belief
in various propositions—usually if not always via beliefs and grades of belief in sentences or other representations of
these propositions. When we want to attach ranks to sentences, pointwise ranking theory first has us specify a set «
possible worlds for the language the sentences are taken from; then we have to specify a ranking over these possib
worlds, which in turn induces a ranking over sets of possible worlds; and only then can we identify the rank of a
sentence with the rank of the proposition containing exactly the possible worlds making our sentence true.

This is a bit awkward. What one would like to do is to start with a ranking of the sentengesimd then be able
to induce a pointwise ranking function on the corresponding set of possible worlds that yields the original ranking.
The question is whether this is always possible. In order to answer it, let us first define ranking functions on fields of
propositions and rankings on languages. (For a similar generalization of pointwise ranking functions see [21].)

2. Ranking functions and rankings on languages

(Finitely minimitive) ranking functions are functions from a field A over a set of possibilitie® into the set of
natural numbers extended by? such that for ali, B € A:

(1) o(®) =o0;
(2) o(W)=0;
(3) 0(AU B) =min{o(A), o(B)}.

If Ais aoc-field/complete fieldp is ac-minimitive/completely minimitive ranking function iff, in addition to (1)—(3),
we have for every countable/possibly uncountable A:

2 One can also take the set of ordinal numbers smaller than or equal to some limit @grdindlsend’ to 8, but we do not need this generality
here.
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(4) o(lUB) =min{o(B): B € B}.

In caseA is finite, i.e., if A contains only finitely many elements, these distinctions collapse. According to (4), the
range of ranking functions has to be well-ordered. Therefdris a natural choice. A ranking functiam on A is
apre-ranking iff o is a finitely minimitive ranking function o4 such that

o(|JB) =minfe(a): A€ B

for every countablé8 € A such thatl J B € A. A ranking functionp is regular iff o(A) < o(¥) for every non-empty
A € A. The conditional ranking function(- | -) : A x A — N U {oc} based on the ranking functien A — N U {0}
is defined such that for all, B € A with B # @,

_Je(BNA)—po(A), ifo(A)<oo,
(5) e(B[4)= {o, if 0(A) = 0.

The second clause says that, conditional on a (virtually) impossible proposition, no non-tautological proposition is
believed inp. Goldszmidt and Pearl ([9]: 63) defingB | A) = oo for A = ¢, which means that, conditional on the
impossible proposition, every proposition is maximally believegdl.iwe further stipulate that(¥ | A) = oo for every

A € A, which completes the definition of a conditional ranking function and ensureg@hat): A — N U {oo} isa
ranking function.

If the functiong, : A — N U {oo} is induced by a (natural) pointwise ranking functionW — N, g, is a (regular
and) completely minimitive ranking function. The converse is not true. The tApie (W, A, o) with W a set of
possibilities,A a finitaryl -/complete field oveW, andp: . A — N U {oo} a ranking function is called a finitary/
/completeranking space. A is calledregular iff o is regular, and is callednatural iff o is induced by some natural
pointwise ranking functior .

A propositionA € A is believed in o iff o(A) > 0. ¢’s belief setBel, = {A € A: o(A) > 0} is consistent and
deductively closed in the finite/countable/complete sense whenésénitely/o -/completely minimitive. Her&el is
consistent in the finite/countable/complete sens@)iff # ¢ for every finite/countable/possibly uncountable Bel;
andBdl is deductively closed in the finite/countable/complete sense iff fot @l4: A € Bel wheneve(\ 5 C A for
some finite/countable/possibly uncountable Bel .2

Observation 1. For any ranking space A = (W, A, o) and all A, B € A:

1. minfo(A), o(A)} =0.
2. ACB = o(B) <o(A).

Rankingsc : £ — N U {oo} on language£ are defined such that for all «, 8 € L:

a =g = ola) =0(p).

a1 = o(a) =o00.

Foa = o(x)=0.

o(a Vv B) =min{o(x), 0(B)}

BY L = o(Bla)=o(xAp)—o(@) (=0if o(a) = 00).
BFEL = o(B|a)=o00.

agrwbdEO

To be suret- Cgp (L) x L is theclassical consequence relation (and singletons on the left hand side are identified
with the wff they contain). The corresponding definitions and observations for finitely minimitive ranking functions
also apply for rankings on languages. Finally, the minimitivity labels correspond to the additivity labels of probabili-
ties, where it is to be noted that complete additivity does not make sense for probabilities.

3 If possibility theory is interpreted in terms of uncertainty rather than imprecision, one can define a notion of belief—positive degree of necessity,
or equivalently, degree of possibility smaller than 1—that is consistent and deductively closed in the finite, though not in the countable sense.
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3. Extending rankings on languages

In probability theory we can start with a probability Pr on a langudgée., a function assigning non-negative
real numbers to all sentencesdrsuch that logically equivalent sentences are assigned the same number, tautologies
are assigned probability 1, and a disjunction of two logically incompatible sentences is assigned the sum of the
probabilities of its two disjuncts. This probability Pr @hinduces a finitely additive probability measure, in fact, a
pre-probability P§ on the fieldA = {Mod(«): « € £} by defining P§(Mod(«)) = Pr(«r). By Carathéodory’s theorem,
Prj is then uniquely extended tocaadditive probability measure Pon the smallest -field o (A) containingA.

More precisely, Carathéodory’s theorem says that whenever we have a pre-probability, i.e., a finitely additive
probability measure Bron a finitary fieldA such that

Prg(U B) = S PriA)

AeB

wheneverA contains the uniot J B of a countable seB of disjoint elementsA € A, then we are guaranteed the
existence and uniqueness of aadditive Pf on o (A) that coincides with Bron A.

This is different in ranking theory. If we start with a rankipgon a language, i.e., a function that assigns the
same rank to logically equivalent sentences, that sends contradictiexsaied tautologies to 0, and that assigns
to a disjunction as its rank the minimum of the ranks of the two disjuncts, then we also get a finitely minimitive
ranking function, in fact, a pre-rankingj on A by settingoj(Mod(e)) = o(a). However, there may be uncountably
many pairs ofo-minimitive (and also completely minimitive) ranking functioe$, o5 on o (A) that extendog,
I.e.,05(A) = 07 (A) = 05(A) for every A € A, but that are not even ordinally equivalent in the sense that there are
B, C € 6 (A) such tha] (B) < 07 (C) ande3(B) > ¢5(C). This is shown by the following example.

Example 1 (No unique extension). The first example shows that a regular pre-ranking cannot always be uniquely
extended to a-minimitive ranking function. This means in particular that there need not be a unique pointwise
ranking function inducing a given pre-ranking.

Consider the smallest set of wifs closed under the propositional conneetiaed A (with v, —, and<« defined
in the usual way) and containing the set of propositional variaBlés= {p;: i € N}. o on L is defined by assigning
each consistent sentence rank 0, and contradictions are sent £s mentionedp induces a finitely minimitive
ranking functionoj on A = {Mod(«): o € £} by defininge;(Mod(e)) = o(«). Indeed o is a regular pre-ranking.
Note that for everyr € £, Mod(«) € A is either empty or uncountable.

The smallestr-field o (A) containing.A has as elements, among others, the singletons containifoy every
o € Mod, because

{w} = ﬂ{MOd(a) ceA wkEaac [:} eo(A)

(there are but countably many wiise £, so this is an intersection of countably many elementdpfNow consider
any of the uncountably many countable subsetf Mod,, and let« be any pointwise ranking function dviod,
such thak (w) > 0 for w € S, andk (w) =0 forw € Mod, \ S. o, (Mod(a)) = 0 = oj(Mod(e)) for every non-empty
Mod(a) € A, ando, () = 0o = gj(?).

Still, one might argue, the interesting question is not uniqueness, but whetheethstsea pointwise ranking
function that induces the pre-rankipg one started with. In case of existence, one can further ask whether there is
a uniqueminimal pointwise ranking function* that induces the pre-ranking, i.e., a pointwise ranking function
«* inducingeg and such that no pointwise ranking functiemith « (w) < «*(w), for somew € W, also inducesg.

As shown by the following example, one cannot expect there tortatusal pointwise ranking function inducing the
pre-rankingog, even ifog is regular.

Example 2 (No regular o -minimitive and no natural pointwise extension). The second example shows that a regular
pre-ranking cannot always be extended to a regulafanmdnimitive ranking function. This means in particular that
a regular pre-ranking need not be induced by a natural pointwise ranking function.

For PV, L, and.A as in Example 1, le¢ be defined as follows:
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o(pi)=i+1,
o(=pi) =0,

. o maXo(pi): £pi; = pi;, 1< j<n}, if Epyg Ao AEp, L,
Q(ipll/\"'/\ipln)_{oo’ ! ! ! |f thil/\"'/\ipi,,l_J—,

o1V -+ Vay,) =minfo(e): 1<i <n},

where may = 0. By putting every wfie € £ into disjunctive normal form we get a regular rankingfnand hence
a regular pre-rankingg; on A. However, in order to extendy to ao-minimitive ranking function oro (4)—and
hence also in order fag; to be induced by a pointwise ranking function brod .—all but countably many of the
(singletongw} containing the) possibilitie® € Mod, must be sent teo.

This is seen as follows: Every € Mod, can be represented by an infinite sequesace (+p1,...,£p,,...),
where+p, meansw(p,) = 1, and—p, meansw(p,) = 0. If there are infinitely many € N such thatw(p;) = 1,
thenw must get rankwo. (Suppose the rank afisn < oo. Thenthere ig: > n such thato (p,,) = 1. o5(Mod(py,)) =
m+1> n, althoughw = p,,—a contradiction.) Se has a finite rank only if»(p;) = 0 for all but finitely manyi € N.
For eachn € N there are but countably mamys such thato (p;) = 1 for exactlyn natural numbers € N. So there
are only countably mangs with w(p;) = 1 for all but finitely manyi € N, and hence only countably mams with
a finite rank.

Still, one might continue to argue, the naturalness of pointwise ranking functions—in contrast to the regularity of
rankings—is too restrictive anyway, and the above example is not sufficient to rule out the existence of an “unnatural
pointwise ranking function that induce§. After all, the important thing is that we do not send any consistent sentence
from £ or any non-empty proposition from to oo, even though we may have to consider some possibilities as
virtually impossible. This is a familiar phenomenon from probability theory, where the Lebesgue measure en the
field of Borel sets over the reals assigns any singleton containing a real number—indeed, any countable set of re
numbers—measure 0, though no non-trivial interval gets Lebesgue measure O.

So, when we start with a rankingon £, and thus get a pre-rankingj on A, is it the case that we always get a
unique minimal pointwise ranking functioi* on Mod that induceg; on A, and hence on £, even though one is
sometimes forced to send some possibilities Mod - to co? The answer is given by

Theorem 1 (Extension theorem for rankings on languages). Let £ be a language, i.e., a countable set of wifs closed
under negation and conjunction, and let o bearanking on £ sothat o isa pre-ranking onthefield A = {Mod(«): a €
L}, where g5(Mod(a)) = o(a).

Then there is a unique minimal pointwise ranking function «* on Mod, that induces oj. That is, gj(A) =
min{k*(w): w € A} for every non-empty A € A; and for every pointwise ranking function « on Mod, such that
Kk (w) < k*(w) for at least one w € Mod, 05(A) # min{k (w): @ € A} for some A € A.

Proof. Let A1 = Mod(«1), ..., A, = Mod(«,), ... be an enumeration of all the countably many elementd,cdnd
definex,’ as follows:

Ky (@) = 05 ((FALN - NEA),
where(:A1N---N=£A,), is the unique element of the finite partition

P,={+A1N---NEA,JCA

of W = Mod, such thatw € (xA1N---N%A,),. For eachw e W, «j(w), ...,k (w), ... is a non-decreasing se-
quence of natural numbers, i.€}; () < &, (w) for m < n. k*(w) is defined as the limit of this sequence, if this limit
exists, and aso otherwise, i.e.x*(w) = liM,— ok, (®).

We first show thak* is a pointwise ranking function o#, i.e., that at least one € W is assigned*-rank O.
Eitherog(A1) =0 or gf(A1) = 0. Let By = Ay, if g§(A1) =0, andB1 = A; otherwise. Hence

05(B1) =0=min{o§(B1N A2), 0§ (B1 N A2)}.
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Let B, = A, if og(B1N A2) =0, andB, = A, otherwise. In general, leB, = A, if op(B1N---NB,1)=0=
05(B1N---N B,_1N A,), andB, = A, otherwise. So for each,
0p(B1N---NB,)=0=«,(w) forallwe BiN---NB,.

As k~1(0) 2 By N --- N By, for eachn, we havec*~1(0) = N2, «*71(0) 2 (2, B,. It remains to be shown that
ﬂj’,o:l B, # (. Suppose for reductio thﬁqff’:l B, = . This means that the set of wits= {8; € L: Mod(8;) = B;} is
inconsistent. By the compactness of classical logic, there is a finite Bfset{s;,, ..., B;,} € B thatis inconsistent,
ie.,

n

ﬂ{Mod(ﬁ,-_/) e A 1< j<n}=0.

j=1

Letm =maxi;: 1< j<n}. ThenB1N---N B, =#, and, by construction of th&;, o5(B1 N --- N By) = 0—
a contradiction.

Sok* is a pointwise ranking function oW: «* sends at least oneto 0, but it may send uncountably masyg to
oo. (For eachn € N, «;¥ is a natural pointwise ranking function d# that sends uncountably mams to 0.) Let us
show next thak* inducesog, i.e., for every non-empty € A:

04(A) = min{x*(w): w € A}.
For everyA € A there is ann s such that for alk > m 4, A is equal to the finite union of all (at most Pelements of
P, that are subsets of. Let oj(A) =r € N U {oo}. By finite minimitivity,
05 (A) = Q(’;<U{iA1 N NEAp, € P, £A1N - N£A,, C A})
=min{of(£A1N - NEAp ) Puy 3 EA1N - NEA,, C A}

Let D1, ..., D; be thel < 24 disjoint “disjuncts”+A1 N --- N +A,, C A in this union, and pick any’ :=+A1 N
--+N Ap, such thai§(A) = of(A”). For eac, each of the - 2" elements off,, , ., whose union is equal td4, and
eachi, 1<i <U:

06(A) = 05(A") <op(Di NEAp, 11N NEAp,10)
=KmA+n(a)) forallw e D; ﬂ:l:AmA+1ﬂ---ﬂ:l:AmA+n.
As eachw € A is in exactly oneD; N +A,,,+1N---NxA,,+, We have for every and everyw € A:
05(A) < ki 4 (@) < M1 (@),
If 05(A) =00, we are already done. So suppegeA) =r < oo, whenceA is non-empty. As before,

04(A) = 0 (A") = min{og(A' N Ay 1), 05(A' N Ay}
LetC1= Ay 41, if 0f(A") = 05(A" N Ay, 11), and letCy = A, 11 otherwise. In general, l&f, 1 = Ay, 111, if
QS(A/ N CmA+l n---N CmA+n) = Qé(A/ N CmA+l n---N CmA+n n AmA+n+1)a

andCy41 = A, +n+1 Otherwise. Then we have for eaeh
05(A) =05(A'NC1N---NCy) =k, 1 ,(@) =r foraloe A'NC1N---NC,.

As iy L, (1) 2 AN, C;, for eachn, we havec*~1(r) = ;21 &7 71(r) 2 AN (N2, C. We only have to show
that A" N (,2, C, # @; for thenk*(w) = r = g§(A) for at least onev € A. As before, suppose for reductio that

A’ N2, Cn = 0. Then the set of wffs
C={a"eL: A'=Mod@")}U{y, € L: C, =Mod(y,),n € N}

is inconsistent. By the compactness of classical logic, there is a finite sGhset {¢', yi,,...,%,} € C that is
inconsistent, which implies that’ N C1N---N C,, =¥, wherem = max{i;: 1< j < n}. But by construction of the
Cp, 05(A'NC1N---NCy) =r < co—a contradiction.
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It remains to be shown that* is minimal. Suppose there is a pointwise ranking functiamn W such that () <
k*(w) for somew € W. This means (w) < lim, .« k, (w), wherex* (w) = oo if this limit does not exist. If this limit
exists, there ig such that for alln > n, k (w) < k' (w) =k, (w) < oco. If this limit does not exist, then for eaehthere
is m > n such thak(v) < «,; (w) < oo (rememberk;; is a natural pointwise ranking function, for eaehe N). So
in both cases there issuch thak (») < ;i (w) < 00. As k() = of(A") for that elemenid’ := A1 N --- N £A, of
P, such thatw € A’, we haver () < of(A") for somew € A" € A. Hencex does notinduceg. O

Theorem 1 is encouraging, but does not extend to pre-rankings on arbitrary fields.

Example 3 (No pointwise extension on arbitrary fields). The third example shows that a regular andninimitive
ranking function on @ -field cannot always be induced by a pointwise ranking function. This means in particular that
a regular pre-ranking on a field need not be induced by a pointwise ranking function.

Let theo -field overhi be

R ={ACHR: Aiscountable of is countabl,

and letp(A) = oo, if A is empty,o(A) =1 if A is non-empty and countable, apdA) = 0 if A is uncountable.
o is a regular and -minimitive ranking functionp (%) = oo, o(9) = 0, and for every countablB C R, o(|JB) =
min{o(A): A € B}. This is seen as follows: If ) B is empty, then so is every € 55; and if | B is non-empty and
countable, then eveny € B is countable, and at least odec B is non-empty. Finally, if_J B is uncountable, then at
least oneA € B must be uncountable, too.

Clearly o cannot be induced by a pointwise ranking functiarp ({r}) = 1, and soc(r) = 1 for everyr € R. But
then mirx (r): r e R} =1> o(N).

Note, though, that Example 3 leaves open the question whether a pre-ranking on.4 ¢imidbe extended to a
o -minimitive ranking function orw (A).

Given that logically equivalent sentences are assigned the same rank, it might seem it should not matter wheth
one works with rankings on languages or ranking functions on fields. However, the above shows that this is not quit
correct. The propositions on a set of moddisd - induced by the sentences of a languége not just any subsets of
an arbitrary set of possibilitied’—as they often are when one considers measure-theoretic fields in general. Rather,
they come with their own structure—most notably, closure under finite intersections only and compactness—that i
inherited from the structure af. Ranking functions behave nicely on this structure, but they do not do so in general.
Assuming that we believe in representations of propositions, say sentences, and not propositions themselves—itt
is, assuming that belief is a sentential or representational, and not a propositional attitude—and assuming that tt
structure of its objects is of importance for the representation of belief, this might be taken to be another reason fo
modeling epistemic states by ranking functions.

There are several other areas where one needs finitely minimitive ranking functions. Theg rea@ non
when one wants to have the reals as range (or some other set of numbers that is not well-ordered by the smaller-th
relation<). The reason is that in this case the minimum of a sequence of real-valued ranks need not exist.

As is well known, the lottery-paradox [11] does not arise for ranking functignduced by pointwise ranking
functionsk. Considering a lottery with tickets where exactly one ticket wins, we have as set of possibilities the
setW, = {w;: i <n,i € N}, wherew; is the possibility that ticket will win (the field is the powerset o). By
definition, a pointwise ranking function assigns rank O to at least one possibilityW,,. Hence one cannot model
the situation that somebody believes of every ticket that it will not win,d,&{w;}) > 0 for everyw; € W,,. If, on the
other hand, one allows sending all possibilities to a rank greater than 0, then one cannot model the situation that ot
believes that some ticket will win, i.eg, (¥) > 0 ando, (W,,) =0.

In the finite case this is true for arbitrary ranking functions. However, if we turn to an infinite lottery with countably
many tickets, the set of possibilities 8., = {w;: i € N} (we take as field the powerset ¥f,,). Now we can send
every singletofw;} to a rank greater than 0 and still get a finitely minimitive ranking function that assigns rank 0 to
Wso. FoOr instance, we can assign rank (dtevheneverA is not finite—say because we go by the slogan: plausibility
is cardinality of the set of possibilities; and whenexes finite, we assign it the minimum of the ran&§w; }), for all
possibilitiesw; in A (whatever these singleton ranks are). Then we have a finitely minimitive ranking function that is
compatible with any ranking of the singletofis;}. In particular, if we believe, for every ticket in this infinite lottery,
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that it will not win, i.e.,o({w;}) > 0 for everyw; € W, we can nevertheless be maximally convinced that some ticket
will win: o(¥) = oo andp(Ws,) = 0. This is not possible for a ranking functien induced by a pointwise ranking
functionx. We can have the above ranking with O for every infindtenly if we send at most finitely many;s to a
rank greater than 0. Similarly for pre-rankings.

4. Probabilities, entrenchments, rankings

Specifying a pointwise ranking function over uncountably many possible worlds is not feasible. In view of this
fact it might be surprising that there are applications in artificial intelligence (e.g. [2,9]) that apparently do work with
pointwise ranking functions. However, these applications actually work with ranking functions on fields, which are
trivially induced by pointwise ranking functions as long as the set of possibilities is finite—and the languages and sets
of possible worlds considered in the above mentioned literature are finite so that each possible world corresponds to
sentence.

Ranking theory is a middle course between probabilistic and logical approaches to the representation of partia
belief and belief revision—in the sense that ranking functions are measured on a proportional scale, whereas probe
bilities are measured on an absolute scale, and entrenchments on an ordinhlisthteliterature on AGM belief
revision theory [1,6] the objects of belief are sentences—or, because of extensionality, the propositions expressed b
these sentences (though not any sets of possibilities). These logical accounts enable one to exgréssrthedt
entrenched or believed thah and thatB is more believed thag'. But in this framework an epistemic agent is not
allowed to quantify the strength of her beliefs. Indeed, she cannot even say that the difference between the strengtt
of her beliefs inA and B is greater than the difference between the strengths of her beligfaimd C. Probabilistic
accounts more or less share the objects of belief (though the focus is more on the semantic side, and any set of po
sibilities can be a proposition), but require the epistemic agent to have precise numerical degrees of belief. Ranking
theory is a moderate middle course: The epistemic agent can say whethenore believed tha® and thatB is
in turn more believed thad'. In addition, the epistemic agent can express that the difference between her grades of
belief in A and B is greater than the difference between her grades of beligfamd C without having to specify
with complete accuracy a numerical degree of belief for each,d, C. More precisely, the agent can express her
grades of belief as multiples of some minimally positive grade of belief.

Given this ranking theory should be welcomed by both subjective probabilists and epistemic logicians. As a matter
of fact, however, neither is the case. Logicians object that it is a mystery where the numbers (ranks) come from (see
however, [19]), and probabilists complain about the ordinal nature of the ranking apparatus. Yet there is one feature
that is shared by both probabilistic and logical accounts of partial belief and belief revision, but that is not present in
pointwise ranking theory: In both approaches the objects of belief are sentences or propositions, whereas in Spohnia
pointwise ranking theory the objects of belief are the possible worlds one level below. So by formulating ranking
theory in terms of ranking functions on a field and rankings on languages we simultaneously approach probabilistic as
well as logical accounts; and we also get rid of the ideal of specifying a ranking over all possible worlds, a requirement
no real-world epistemic agent could ever m@et.

Continuing this comparison we note that probabilists have the notions of positive and negative relevance and
of independence between propositions, which seem to be of utmost impoft&actermore, they have a way of
revising one’s epistemic state represented by a probability measure over alfieid. Jeffrey conditionalisation,

4 |am grateful to an anonymous referee for pressing me further on this point.

5 The epistemic logician will note that the ordering< 8 < o(—a) < o(—p) satisfies all conditions for entrenchment orderings mentioned in
Section 4.2 of [7], withK = {a € L: o(—«) > 0}.

6 In his [19] Spohn presents the theory of measurement for his ranking theory, but does so only for the finite case. It should be clear that a theory
of measurement fos -minimitive, let alone completely minimitive or pointwise ranking functions also covering the infinite case is inapplicable.
One necessary condition for an ordering of disbelief to be representedmginimitive (or completely minimitive or pointwise) ranking function
is that wheneven is not more disbelieved than any of infinitely many propositi@asthen A is not less disbelieved than the unip} . B; of
all these propositions; . For finitely minimitive ranking functions and rankings on languages this condition reduces to the following finite version:
WheneverA is not less disbelieved than either oneB&ndC, thenA is not less disbelieved thahu C.

7 Conditional probabilistic independence and its (incomplete) axiomatization, the (semi-)graphoid axioms, started to become of interest with
[3,14,15]. Judea Pearl and his group at UCLA started to work with independence in the eighties (e.g. [8,12,13]); for a survey see [18] or [4]. A lot
of work on axiomatizing independence has been done by Milan Studeny (e.g. [20]).
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when the incoming evidence is represented by a probability measure over a subfieldagficians neither have the
notions of positive and negative relevance and independence nor do they have an appropriate way of updating the
epistemic state represented by a selection function or an entrenchment ordering. Pointwise ranking theory has bc
of these desirable features [16], and the question is whether they are preserved when we generalize these to rank
functions on fields. The answer is that they are. Copying from Spohn L8 positively relevant for/independent
of/negatively relevant for B given C in the sense of the ranking functieniff

Q(AmB|C)+Q(ZmE|C)§Q(A0E|C)+Q(Zr13|C).

If 0: A— N U{oo} is the agent’s ranking function on the fiekdlover W at time¢, and betweemn and:’ the agent’s
ranking function on the field € A changest@’:£ — N U{oo}, and the agent’s ranking function does not change on
any field3 such tha® C B C A, then the agent’s ranking function ohat time:’ should beg,_, , : A — N U {o0},

Qoo () =min{k(-| Ej) +¢'(Ep): i €1},

where(E; € £: i e I} is a partition of W for which there is no finer partitiofE; € £: j € J}, andl, J are any index
sets.

On the other hand, epistemic logicians have the notion of a belief set that is consistent and deductively closed [10
As shown by the lottery paradox, there is fio- 0 such that the set of all propositiodswith Pr(A) > 1 — ¢ is
deductively closed and consistent. So probabilists lack the notion of a belief set (as long as belief is sufficiently higt
degree of belief). Any pointwise ranking functiangives rise to a belief seBel = {A € A: o, (A) > 0} which is
consistent and deductively closed in the following complete sense (e\Bxi i uncountable)() Bel # @, and for
everyA € A: A € Bel wheneveBel C A.

We have already noted in Section 2 that the same holds true for ranking functions on fields, and conclude b
working out this observation for rankings on languages. The belieBsét= {« € L: o(—w) > 0} induced by a
rankinge on £ is consistent and deductively closed in the classical finite senBel i 8, for someg € L, then, by
the compactness of classical logic, there is a fiBitk, C Bel such thaBelsi, - 8. Let Belsiy = {@1, ..., a,}. Then
—BE -1V Vo, 0(—B) = o(—ay V-V ) by Observation 1 for rankings on languages, attlog Vv - - - Vv
—a,) =minfo(—w;): 1<i <n,i € N} by clause 3 in the definition of rankings on languages. Heiie) > 0, i.e.,

B € Bel. As to consistency, suppose for reductio tBet is inconsistent. TheBel - L, which meang(T) > 0—in
contradiction to clause 2 in the definition of rankings on languages.

5. Conclusion

In this paper we have generalized pointwise ranking functions on sets of possibilities to ranking functions on fields
of propositions and rankings on languages. In doing so we have kept the important notions of positive and negativ
relevance as well as independence. Through the belief set induced by a ranking function, we also save the link betwe
belief and degrees of belief—the very feature distinguishing ranking theory from other theories of degrees f belief.
Finally, Theorem 1 and Examples 1-3 from Section 3 clarify the conditions under which ranking functions and
rankings on languages are induced by pointwise ranking functions.
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