Belief and Counterfactuals.
A Study in Means-End Philosophy

Franz Huber
University of Toronto

Forthcoming with Oxford University Press.

Please cite and quote the publisher’s version!
IN MEMORIAM Ida HUBER
Contents

Preface v

1 Introduction 1

2 Belief First 17
 2.1 Ideal doxastic agents 17
 2.2 Belief and ends 20
 2.3 Conditional belief and belief revision 22

3 Belief Revision 29
 3.1 The AGM theory of belief revision 29
 3.2 Systems of spheres 37
 3.3 Iterated belief revision 41

4 Conditional Belief 51
 4.1 Ranking theory: static rules 51
 4.2 Ranking theory: dynamic rules 58
 4.3 Iterated belief revision revisited 65

5 Why Should I? 75
 5.1 The consistency argument 75
 5.2 The consistency argument continued 83
 5.3 The consistency argument completed 92
 5.4 Hypothetical imperatives 96
 5.5 Conditional obligation and conditional belief 103
 5.6 Appendix: Proofs 108
Applications in Epistemology

6.1 Conceptual belief change and logical learning 117
6.2 Learning indicative conditionals 125
6.3 In defense of rigidity .. 133
Preface

This book is the first of two volumes on belief and counterfactuals. It consists of six of a total of eleven chapters. There are at least three reasons for splitting what originally was intended to be one volume into two. One reason is topical: the first volume is concerned primarily with questions in epistemology, while the second will deal with issues that are more metaphysical in nature. Another reason is content-related in a different way: the first volume, especially chapters 3 and 4, is somewhat expository in character. A third reason pertains to length: I wanted to write a short book. That being said, philosophical problems are entangled with each other. The introductory chapter 1 gives an overview of all eleven chapters of what still is one project, as well as its unifying approach: means-end philosophy.

I am grateful to Igor Douven, Kenny Easwaran, Stephan Hartmann, Richard Pettigrew, Thomas Kroedel, Christoph Schmidt-Petri, Miriam Schoenfield, and Jonathan Weisberg for their comments on parts of an earlier version of this book; to Peter Ohlin and Oxford University Press for their flexibility; as well as to the referees for their constructive guidance.

I am very grateful to Alice Huang, Aaron Kenna, and Eric Raidl for carefully studying all of an earlier version of this book. Their feedback has been extremely helpful.

For the same reason I would like to thank Wolfgang Spohn. However, in his case my gratitude extends far beyond his feedback on earlier versions of this book. It includes his support, in many and varied ways, over close to two decades, as well as his philosophical contributions. These have many features and virtues. The one that stands out is that they are groundbreaking. This is obvious for his work on ranking theory. It is also true of his work on decision theory and causation, in his dissertation, habilitation, and 1980 paper, which anticipates later developments in the study of causal Bayesian networks; as well as his work on game theory, with the 1982 paper paving the way for epistemic game theory. This book restricts the discussion of Wolfgang’s work to ranking theory. More books need to be written.
Parts of chapter 2 rely on, and with permission of *The Reasoner*, reuse material from Huber (2013a). Chapters 3-4 rely on and, with permission of Wiley, reuse material from Huber (2013b; c). Parts of chapter 5 rely on and, with permission of Springer, reuse material from Huber (2007b; 2017). Chapter 6 relies on, and with permission of Springer, *Symposion*, and *analytica*, respectively, reuses material from Huber (2009), Huber (2014b), and Huber (2015b), respectively.

Toronto, July 2020
Chapter 1

Introduction

This book and the second volume are about belief and counterfactuals, as well as their relation. Belief is central to epistemology. It occurs when an agent such as a person or, perhaps, computer program holds something to be true. Counterfactuals figure prominently in metaphysics. They are *if-then* claims, or conditionals, about what would have been the case if certain conditions had obtained. One aspect of their relation that I will focus on is a question in the epistemology of metaphysics.

In the way I will engage with it, epistemology is a normative discipline. I will study how agents *should* believe, as opposed to what they *do* believe. More precisely, I will study how agents should believe on the hypothesis that they have certain ends such as holding true and informative beliefs. In the way I will engage with it, metaphysics is subordinate to epistemology insofar as metaphysical theses are necessary conditions for the satisfiability of epistemological norms. Given an instrumentalist understanding of normativity, this means that metaphysical theses are necessary conditions for the possibility of attaining certain epistemological ends. How exactly this “transcendental” metaphysics is supposed to work is a complicated matter. I will try to explain it below.

Broadly speaking we can distinguish four approaches to understanding belief. Representationalists such as Fodor (1975) and Millikan (1984) claim that holding a belief consists in the possession of a mental representation with a propositional content. Dispositionalists and their predecessors, behaviorists, claim that holding a belief consists in certain acts or dispositions to act, such as the disposition to act as if the propositional content of the belief was true. A particular version thereof is interpretationism (Davidson 1984). According to it, an agent holds a belief if, and only if, a charitable interpretation of the agent’s acts or dispositions to act requires attributing this belief to the agent.
CHAPTER 1. INTRODUCTION

Each of these views can be combined with a functionalist understanding of belief, but functionalism can also be defended on its own. It says that holding a belief consists in the agent’s mental state standing in the right causal relations to sensory stimuli, acts or dispositions to act, and other mental states such as desires. While considering beliefs to have propositional contents is not essential to all of these positions, they all are compatible with doing so. The same is true of primitivism, which postulates belief as a primitive mental state that does not admit of further analysis. These propositional contents have a certain “conceptual structure.” The details of this structure will depend on one’s view of propositions (Stalnaker 1984), but minimally it will comprise the structure of logic and set theory. It is this minimal conceptual structure that the present project presupposes.

An approach to understanding belief that this book rejects is eliminativism (Churchland 1981). The latter flatly denies the existence of beliefs. On this view, beliefs are a convenient fiction we ascribe to ourselves and others in our everyday conception of the mind, our “folk psychology.” However, so this view, the mature science that will eventually replace this pre-scientific view of the mind will hold that there are no beliefs. Every other position that gets rid of belief – for instance, by replacing it with probabilistic degree of belief (Jeffrey 1970) – is also rejected by this book. It is an assumption of the present project that there are beliefs, and that an agent can have ends that are attained if, and only if, she holds certain beliefs (whose propositional contents may, but need not be required to be true).

There exist at least two kinds of conditionals (Adams 1970, Briggs 2019): indicative conditionals and counterfactual, or subjunctive, conditionals (although not everybody is willing to identify counterfactual and subjunctive conditionals; see Bennett 2003). Each can be approached in at least two ways. On one view conditionals express propositions that are true or false (Stalnaker 1968, Lewis 1973a). On another view conditionals do not express propositions that are true or false; they do not have truth values. Instead, they express the uttering or thinking agent’s internal state of mind rather than a proposition about the external reality. The latter “expressivist” view is prominent for indicative conditionals (Adams 1975, Edgington 1995), but some also adopt it for counterfactual conditionals, or counterfactuals for short (Edgington 2008; Spohn 2013; 2015 whose account has it that counterfactuals express propositions relative to the agent’s conditional beliefs and a partition). In this book and the second volume I will be concerned primarily with counterfactuals. Indicative conditionals will play a role mainly insofar as they express conditional beliefs. While I think this is the right view, and I will assume it throughout this book, not too much hinges on this assumption: if it was false, I just would not say much about indicative conditionals.
In contrast to this, much hinges on the assumption that counterfactuals express propositions that are true or false. The present project assumes counterfactuals to have truth values. However, I hasten to add that this assumption does not bring with it what is known as “modal realism” (Lewis 1986a).

A factual or non-modal language allows one to say that something is the case: it is raining; the streets are wet. A modal language or system of representation presupposes a factual language and additionally allows one to say how something factual is the case: it could be raining; probably it is; if it was, the streets would be wet. Of course, what is a modal claim in one language may be a factual claim in another. For each factual language there is at most one linguistic, conceptual, or representational entity that accurately and maximally specifically – that is, as completely as the factual language allows – describes or represents reality. I will call this entity the actual factual “world” for the factual language considered.

The actual factual world is not real. To use a dangerously loaded term, it is an idea – a mind-dependent construct somewhat similar to a state description (Carnap 1947a). Besides the actual factual world there are many merely possible factual worlds, i.e. descriptions or representations that maximally specifically, but inaccurately represent reality. These factual worlds include every description or representation the factual language or system of representation allows for. (Which these are is itself something that needs to be learned, and we will see in chapter 6 how to do so.) Factual worlds give rise to factual propositions which we can formally represent as sets of factual worlds. So much for a factual language.

In a modal language we can say more than in a factual language. In addition to being able to say that it is not raining, we can say that it could have been raining, that it probably was not, but that, if it had been, the streets would have been wet. Modal propositions can be formally represented as sets of modal worlds.

Modal worlds consist of a factual component, which is a factual world, plus one modal component for each modality. In our case the modal component of a modal world specifies what could and would have been in its factual component. The modal component does not specify what could and would have been in reality. Instead, it specifies what could and would have been in some factual world, which may or may not be the actual factual world. This means that modal propositions are not about reality, but about ideas. Furthermore, for any factual world there is at most one modal component that accurately and maximally specifically describes what could and would have been in this factual world. This modal component is determined by the factual world and the language or system of representation. Reality has a say in this only insofar as it has a say in which factual world is actual, and which language one is speaking.
On this view, factual and modal worlds are relative to a language or some other form of representation. They are not real in any language-, thought-, or representation-independent sense. We talk and think about and conceptualize and represent reality in terms of what is and what is not, in terms of what could be, and in terms of what would have been. And we do so because we find it useful. Yet these nots and coulds and woulds are not part of reality. They belong to the language or system of representation we use to describe or represent reality, and thus to the realm of the mental. As its name suggests, the only thing that is really real is reality.

Suppose it is neither raining nor snowing, but that it could have been raining, and that the streets would have been wet if it had been. On the present view there is nothing in reality that is described by, corresponds to, or makes true these nots and ors and ands and coulds and woulds. They are tied to our representation of reality in thought and language – and needless to say, we cannot think, let alone talk about reality without some representation. Just as thinking and talking about reality are dependent on a language or system of representation, so is truth. This is why these claims and thoughts can have truth values without there being anything in reality that makes them true. What is true and what is not true, and what could be true and what would have been true depend on reality because the actual factual world depends on reality. Yet what is true also depends on the language or system of representation that these propositions belong to. Counterfactuals and other modal claims can express truths, and not merely beliefs or conditional beliefs, without there being any modal reality that makes them true. The reason is that they can be understood as claims about ideas.

In sum, the present view – which I will call idealism about alethic modality, that is, the modality that pertains to what is true – is a third option between the realist and expressivist views. Like the expressivist, the modal idealist does not locate the modalities in reality, but in the mind. Like the realist, the modal idealist does not interpret the modalities as expressing doxastic states, but as propositions that are true or false. Of course, what counts as proposition is radically different on the realist and idealist accounts. Modalities are ideas. However, they are not ideas with reality. They are our ideas. We conceptualize reality in terms of coulds and woulds, and we do so for the exact same reason that we conceptualize reality in terms of nots and ors and ands: because we find it useful. Different beings who also think or talk about reality may conceptualize or represent it in different terms or ideas – say, because they have different abilities and limitations, or because they have different ends. There is no right or wrong here, just a more or less useful for various purposes.
In chapter 5 I will argue that something similar is true of deontic modality that expresses what should or ought to be. Rather than corresponding to some deontic reality, it reduces to what we might desire and which means-end relationships obtain. What is real are our desires and beliefs. More precisely, what is real is our having desires and our holding beliefs. Their propositional contents are not.

Counterfactuals are about what would have been the case if certain conditions – conditions that may well be contrary to fact – had obtained. An agent believes a proposition if, and only if, she holds it to be true (which does not imply that she has or should have the end of holding true beliefs). An agent believes a proposition conditional on another (or the same) if, roughly, she holds the former proposition to be true on the assumption that the latter is. Chapter 5 will present an account of the nature of conditional belief. For now it is enough to distinguish it from the agent’s belief in the corresponding counterfactual (Leitgeb 2007). There are, however, circumstances in which a conditional belief is related to the belief in the corresponding counterfactual. This is so because some counterfactuals imply singular default conditionals, and because a conditional belief is related to the belief in the corresponding default conditional.

A default conditional is an if-then claim about what is usually, normally, or typically the case if certain conditions obtain, where normality is understood in a purely descriptive sense (Bear & Knobe 2017). Normally, if Tweety is a bird, it can fly. This means Tweety can fly in the most normal worlds in which it is a bird. It is more normal for Tweety to be a bird and be able to fly than for it to be a bird and not be able to fly. Often default conditionals are inferred from generic default rules such as that birds can normally fly, but penguins cannot. In this case the default conditional that, normally, Tweety can fly if it is a bird can be inferred only if one has no information about Tweety that contradicts the claim that it can fly. For instance, one cannot infer that it is more normal for Tweety-the-penguin to be a bird and be able to fly than for it to be a bird and not be able to fly.

Similarly, the default rule that presidents normally do not tweet does not allow one to conclude that it is more normal for Trump to be president and not tweet than it is for him to be president and tweet – just as the generic information that, statistically speaking, presidents are likely male does not allow one to conclude that the first female president is likely male. Generic default rules and statistical information are formulated in terms of generic variables that are defined on a population of individuals. Singular default conditionals and claims about single-case probabilities are formulated in terms of singular variables (Huber 2018: ch. 10). The question under what conditions the former license inferences to the latter is a variant of the reference class problem (ibid.).
A default conditional $\alpha \Rightarrow \gamma$ is true in the actual world if, and only if, γ is true in all possible worlds (i) in which α is true and (ii) which are most normal from the point of view of the actual world. We will see below that there are several counterfactuals. Some of them (but not all, as these counterfactuals may contradict each other) imply the corresponding default conditionals. To see why, let $\alpha \square \rightarrow \gamma$ be a counterfactual of this kind. $\alpha \square \rightarrow \gamma$ is true in the actual world if, and only if, (1) γ is true in all possible worlds in which α is true and which are most normal; and – if the actual world is itself less normal than the most normal worlds in which α is true – (2) γ is true in all possible worlds in which α is true and which are at least as normal as the actual world. The counterfactual $\alpha \square \rightarrow \gamma$ thus says that, normally – and even if things are not normal, as long as they are not less normal than the way things actually are – if α is true, then so is γ.

The actual world may, but need not be among the possible worlds which are most normal from its point of view. If it is, the counterfactual $\alpha \square \rightarrow \gamma$ is true in the actual world if, and only if, the default conditional $\alpha \Rightarrow \gamma$ is. Otherwise the counterfactual may be false while the default conditional is true. However, the converse case cannot occur for a counterfactual of this kind.

Ida is certain that it is more normal for it to be sunny on Wednesday and her to have lunch in the park than for it to be sunny that day and her not to have lunch in the park. This may be because she is certain that she would have lunch in the park if it was sunny on Wednesday. In this situation Ida should believe that she will have lunch in the park on the assumption that it is sunny on Wednesday. When an agent is certain of a default conditional, but no “overriding” information, she should believe its consequent, or then-part, on the assumption that its antecedent, or if-part, is true. This normative principle relating belief in a default conditional and conditional belief is an approximation of the royal rule. Some counterfactuals imply the corresponding default conditionals, and an agent may believe a default conditional because she believes the corresponding counterfactual. Therefore, this approximation also connects belief in some counterfactuals and conditional belief. This connection will be explored in chapters 7 and 10.

The plan for the remainder of this book and the second volume is as follows. In chapter 2 I will first discuss which agents I am focusing on, as well as which cognitive ends I am assuming them to have. Then I will describe how this relates to conditional belief and belief revision. Chapter 3 will first present the AGM theory of belief revision (Alchourrón & Gärdenfors & Makinson 1985). Then I will focus on the problem of iterated belief revision. In chapter 4 I will show how this problem finds a solution in ranking theory, which was introduced in Spohn (1988) and is most comprehensively discussed in Spohn (2012).
Chapter 5 will first answer the question why conditional beliefs should obey the ranking calculus. Then I will discuss the underlying view of normativity. I will conclude with a note on the logic of conditional obligations, which is identical to the logic of conditional beliefs. In chapter 6 I will consider two small applications of ranking theory to problems in epistemology and the philosophy of science. The first explains how concepts can be learned in ranking theory. This includes logical learning as a special case. The second explains how conditional information as conveyed by indicative conditionals can be learned. These applications illustrate how ranking theory can be fruitfully applied to tackle philosophical problems that have proven difficult for Bayesianism. I will conclude this chapter by dissolving a worry raised by Weisberg (2015).

In chapter 7 I will turn to the logic of counterfactuals and try to explain how I think we can and should engage with some philosophical problems. Central to this view of how to philosophize are an instrumental understanding of normativity, or rationality, according to which one ought to take the means to one’s ends, and the use of formal methods in establishing means-end relationships. The view is motivated by a deep mistrust of intuitions. While I may not always be able to hide my frustrations with some of the more speculative versions of intuition-based philosophy, my aim is a constructive one: to point out one way of engaging with some philosophical problems that does not overly rely on intuitions.

Philosophers interested in counterfactuals often consider it decisive which counterfactuals intuitively seem to be true. However, subjective intuitions vary across philosophers and within philosophers across time (Knobe & Nichols 2008). I want to supplement this intuition-based methodology with what may be called a “principled” account of the logic of counterfactuals. Specifically, I will propose a normative principle, the royal rule, that indirectly relates default conditionals and counterfactuals to conditional beliefs.

The general idea behind the royal rule is that, absent further information, alethic modality constrains or guides doxastic modality, that is, the modality that pertains to belief. An approximation of it in terms of default conditionals says that an agent should believe a proposition \(C \) on the assumption that she is certain of the proposition \(A \), as well as the default conditional that, normally, if \(A \), then \(C \), but no overriding information. The idea is that, absent overriding information, default conditionals constrain or guide conditional beliefs. More precisely, the royal rule says that one ought to disbelieve a particular proposition to a particular grade on the assumption that it is, in a purely descriptive sense, abnormal to this grade for this proposition to be true, but no stronger or further information.

The royal rule is a qualitative version of Lewis’ (1980) “principal principle”
which relates chance and degree of belief. The latter principle says that an agent’s initial degree of belief in a proposition C ought to be equal to x given that the chance equals x that C is true and, perhaps, further “admissible” information, but no inadmissible information. With the help of a couple of assumptions about what information is admissible, the principal principle entails that chances behave how an agent’s initial conditional degrees of belief ought to behave. Now, initial degrees of belief – and, given the ratio formula, initial conditional degrees of belief – ought to obey the probability calculus. Witness, for instance, the Dutch Book argument due to de Finetti (1937) and Ramsey (1926) (here it is tricky to rely on Joyce 1998; 2009’s gradational accuracy argument, as Joyce 2009: 279 appeals to the principal principle in defense of his assumptions about inaccuracy). Therefore, chances do so as well.

Thus, probabilism, i.e. the thesis that degrees of belief ought to obey the probability calculus, and the principal principle have a consequence that is about chances – namely that chances are probabilities. While this claim is presumably also in agreement with our subjective intuitions, there is no need to appeal to the latter in order to defend this claim. Probabilism and the principal principle do this for us. This illustrates how two normative principles from epistemology can entail a metaphysical thesis.

Suppose that, in addition, we can justify both probabilism and the principal principle. According to instrumentalism, what one ought to do is take the means to one’s ends. Thus, to justify a normative principle is to show it to be a means to attaining some end one may have. Probabilism can perhaps be justified by the Dutch Book argument, and the principal principle can perhaps be justified in some other way (Pettigrew 2013). If so, the thesis that chances are probabilities is a consequence of probabilism and the principal principle which in turn can be justified by being shown to be means to attaining ends one may have. Intuitions are certainly useful as a heuristics in arriving at these normative principles, and in considering various metaphysical theses. However, at no point does one have to appeal to intuitions in order to defend the metaphysical thesis.

The upshot of this way of engaging with some philosophical problems – of means-end philosophy – is the following. The metaphysical thesis that chances are probabilities is a necessary condition for the possibility of attaining certain ends one may have. Given that one has these ends, one ought to satisfy those norms. Yet one can satisfy those norms only if things are a certain way. Means-end philosophy thus tells one what metaphysical theses one is committed to by pursuing various ends.

In the same way I want to use the royal rule and the thesis that beliefs ought
to obey the ranking calculus to derive some properties of descriptive normality.
Given the truth conditions stated above, these properties determine some of the
logical postulates satisfied by default conditionals and counterfactuals. These
postulates are expected to approximate the logical postulates philosophers have
proposed on the basis of subjective intuitions. However, we do not have to rely
on those intuitions in order to support these postulates. Instead, we obtain them
as consequences of two normative principles from epistemology plus assumptions
about the truth conditions of default conditionals and counterfactuals.

This is the sense in which the account of the logic of counterfactuals will be
principled. Of course, to be convinced by this means-end argument one needs to
accept the assumptions made, as well as pursue the ends the normative principles
are means to attaining. Those who do not are given information about a means-
end relationship for which they may have little or no use.

In order to carry out this argument in detail the following ingredients are
needed. First, we need a theory of conditional beliefs. Spohn (1988)’s theory
of ranking functions will tell us how conditional beliefs ought to behave. The
conditional theory of conditional belief from chapter 5 will tell us what they are.
Second, we need a precise formulation of the normative principle which relates
descriptive normality to conditional belief. We will get this in the form of the
royal rule in chapter 7. Third, we need an argument that establishes the thesis that
conditional beliefs should obey the ranking calculus. This will be the consistency
argument from chapter 5. Finally, the very principle relating descriptive normality
to conditional belief, the royal rule, needs to be justified as well by being shown
to be a means to attaining an end one may have. This will be attempted in section
8.1.

In the remaining sections of chapter 8 I will consider two small applications
of the resulting theory to problems in metaphysics and the philosophy of science.
The first application concerns Lewis (1973b)’ definition of causation in terms of
counterfactuals. It turns out to be a special case of Spohn (2006a)’s definition of
causation in terms of ranking functions modulo the interpretation of the latter. The
second application concerns a problem for Lewis (1979)’s “system of weights or
priorities” governing overall similarity between possible worlds that arises from
an application of Arrow (1951)’s impossibility theorem. I have first learned of
raises it, too. The relevant section 8.3 relies on joint work with Thomas Kroedel
(Kroedel & Huber 2013). These applications illustrate how ranking theory can be
fruitfully applied to tackle philosophical problems that have proven difficult for
the similarity account of counterfactuals (Stalnaker 1968, Lewis 1973a).
CHAPTER 1. INTRODUCTION

The goal of chapter 9 is to show that the rank-theoretic normality account of counterfactuals is better suited for theorizing about causality than the similarity account of counterfactuals, as well as the structural equations framework (Spirtes & Glymour & Scheines 2000, Pearl 2009). As mentioned above, counterfactuals are claims such as the following: if Ida had not had coffee in the morning, she would have been tired at noon. They are about what would have been the case (Ida would have been tired at noon), if certain conditions had obtained (if Ida had not had coffee in the morning). As suggested by the term ‘counterfactuals,’ these conditions may well be contrary to fact – in fact, Ida had coffee in the morning. Causal claims are claims about one property or event being an effect of another property or event. Ida’s being alert at noon is an effect of her having coffee in the morning. In other words, her having coffee in the morning causes, or brings about, that she is alert at noon.

Counterfactuals are closely related to causality (Collins & Hall & Paul 2004, Paul & Hall 2013). A causal claim is often (e.g. in Lewis 1973b; 1979; 2000) said to be shorthand for a more complicated claim involving a specific counterfactual. The causal claim that Ida’s being alert at noon is an effect of her having coffee in the morning is often said to be shorthand for, or at least closely related to, the following three claims essentially involving a specific counterfactual. First, Ida had coffee in the morning. Second, Ida was alert at noon. After all, only properties that are instantiated or events that take place can be causes or effects. Third, the “causal” (or better: Briggs 2012’s more general “interventionist”) counterfactual: if Ida had not had coffee in the morning, she would have been tired at noon.

The causal counterfactual is “forward-looking.” Its antecedent is about the potential cause: whether or not Ida had coffee. Its consequent is about one of its alleged effects: whether or not Ida was alert. These forward-looking, causal counterfactuals are to be used in the study of causality. However, there are other counterfactuals that relate to causality in a different and sometimes opposing way, and still others that do not relate to causality at all. For instance, you may wonder whether Ida had coffee. You figure: if Ida had not been alert at noon, she would not have had coffee in the morning. That is, you reason from the absence of one of the alleged effects back to the absence of the potential cause. Causal counterfactuals reason in the opposite direction from the potential cause forward to one of its alleged effects. They also hold fixed what is actually the case: even if Ida had not been alert at noon, she would still have had coffee in the morning. This causal counterfactual contradicts the previous counterfactual. Moreover, it is also true that if Ida had not drunk anything, she would, trivially, also not have had coffee. However, this counterfactual is not related to causality at all.
The non-causal counterfactuals of the former kind are called “backtracking” counterfactuals, those of the latter kind “spurious” (Menzies 2008). The question is where to draw the line between causal counterfactuals on the one hand, and backtracking and other non-causal counterfactuals on the other (Woodward 2003).

The state of the art representation of causal counterfactuals are causal models with structural equations (Haavelmo 1943, Halpern & Pearl 2005, Pearl 2009, Spirtes & Glymour & Scheines 2000). However, structural equations presuppose rather than provide an answer to the question where to draw the line between causal and non-causal counterfactuals. They also do not capture all aspects of causation (Hiddleston 2005). The latter problem has led to the development of so-called “extended causal models” (Halpern 2008; 2016, Halpern & Hitchcock 2010; 2013). These contain two elements representing two seemingly distinct modalities. The first element are structural equations which represent the “(causal) laws” of the model. The second element is a ranking function (or, in later versions, an ordering relation) which represents normality.

One goal of Chapter 9 is to show that these two seemingly distinct modalities can be unified into one modality by adopting the theory of counterfactuals from chapter 7. It is to be noted, though, that normality in extended causal models is understood to include non-descriptive, normative elements (Hitchcock & Knobe 2009). These are explicitly excluded from the way normality is understood here. The unification will be achieved by formulating two constraints. These allow us to subsume extended causal models with their two modalities under “counterfactual models” which contain just the one modality of descriptive normality.

The two constraints turn out to be formally precise versions of Lewis (1979)’s “system of weights or priorities” that governs overall similarity between possible worlds. This system is Lewis (1979)’s answer to the question where to draw the line between causal and non-causal counterfactuals. It appeals to the model-independent notion of a “law of nature.” The two constraints appeal to the model-relative notion of a “necessarily true default conditional.” The latter differs from the notion of a law of nature (Woodward 2003: ch. 6) and corresponds to what is represented by a structural equation. Menzies (2004) argues that such model-relativity is unavoidable. If so, the two model-relative constraints might be viewed as an answer to the question where to draw the line between causal and non-causal counterfactuals. However, without a means-end argument for this claim I can only refrain from making it. Both Lewis (1979)’s answer and the two constraints locate the difference between causal and non-causal counterfactuals not in their truth-conditions, but in what is held fixed in determining overall similarity and descriptive normality, respectively. I will assume this much to be correct.
Chapter 10 will bring together the view of conditional beliefs developed in chapters 2-6 and the view of counterfactuals developed in chapters 7-9 by focusing on the question what one should believe about what would have been the case. This will be done by considering conditions under which default conditionals and counterfactuals can be tested empirically. (For the time being I will bracket that what is, strictly speaking, directly accessible is restricted to the agent’s internal state of mind and excludes the external reality.)

Suppose I tell you what Ida had for breakfast Monday through Thursday, and whether she was tired at noon on these days. You will have no difficulty inferring that Ida would have been tired at noon on Friday, if she had not had coffee on Friday morning. My interest lies in identifying conditions under which one can – with a particular form of reliability – infer the truth values of counterfactuals from “empirically accessible” information. I will do so by stating a very simple theorem. An implication of this theorem that may be of philosophical relevance is that it allows us to justify inferences from empirically accessible information to counterfactuals by showing these inferences to be means to attaining ends one may have. An implication of this theorem that may be of technological relevance is that it allows us to program computers to possess this inferential ability.

The fundamental theorem underlying statistical inference is the Strong Law of Large Numbers. This “law” relates relative frequencies – which may, in general, be empirically accessible or “observable” – and probabilities. As a theorem, the SLLN holds for every interpretation of probability. Therefore, we can interpret the probabilities as chances. The latter go beyond what is observable in much the same way that counterfactuals do: both are alethically modal notions. Given this interpretation of probability, the SLLN says that the chance is maximal that the observable relative frequencies converge to the chances which, in general, are not observable; and that the observable averages converge to the “expectations” which, in general, are not observable (these expectations are defined in terms of chances, so the epistemological connotations of this notion should be ignored).

Relative frequencies and averages are the notions used to describe data in a probabilistic manner in order to make statistical inferences based on the SLLN. Also used to describe data is the notion of the modes of a sample. The modes of a sample are its most frequent outcomes. Modes have a wider applicability than averages because the former, in contrast to the latter, make sense even when the data cannot be described numerically. While modes play an important role in descriptive statistics, they do not play a role anymore in inferential statistics. The reason is that modes, in contrast to relative frequencies and averages, do not behave like probabilities. Therefore, the SLLN does not apply.
The thesis of chapter 10 is that modes can not only be used to describe data, but can also be used in inference. Modes provide empirically accessible information that allows us to infer the truth values of default conditionals and counterfactuals which, in general, are not empirically accessible. They do so in much the same way relative frequencies and averages provide empirically accessible information that allows us to infer the values of chances and expectations.

In order to support this thesis I will present a qualitative version of the SLLN. The first challenge is to find a precise formulation of the theorem to be proven and, in particular, of the qualitative notion of a probability measure. By now it will be clear that this is a ranking function. Just as probabilities can be interpreted, among others, in a doxastic sense as degrees of belief, in an alethic or metaphysical sense as chances, and in an empirical sense as relative frequencies, ranking functions can be interpreted in at least three ways. Subjective ranking functions represent beliefs. Alethic ranking functions represent descriptive normality and – via the assumption of their truth conditions – default conditionals and counterfactuals. In addition, there are the empirical notions of absolute and relative failures that generalize the notion of the modes of a sample.

In the probabilistic case the observable information reported in the form of relative frequencies in principle allows one to “find out” (in a loose sense made precise below) exactly what the chances are. In the present rank-theoretic case the situation is different. The empirically accessible information is not rich enough to allow one to find out exactly what the alethic ranks are, not even in principle (and not even in a loose sense). One reason for this is that ranks are at best measured on a ratio scale, whereas probabilities are measured on an absolute scale. Something slightly weaker is true, though. The empirically accessible information reported in the form of absolute failures allows one to “find out” (in a slightly stricter sense made precise below as well) the features of alethic ranks that determine the truth values of non-iterated default conditionals and counterfactuals. (This works by, among others, initially believing all contingent default conditionals to be false.)

The situation in the rank-theoretic case is different in two further respects. First, the conditions of the theorem are weaker than the corresponding conditions in the probabilistic case. In the latter case the individual trials are assumed to be independent and identically distributed in the sense of the chance measure. In the present case the conditions on the individual trials are weaker, if we make assumptions that allow us to relate chance and descriptive normality. Second, the sense in which the new theorem allows one to find out the truth values of default conditionals and counterfactuals is stronger than the corresponding sense in the probabilistic case.
CHAPTER 1. INTRODUCTION

Information about relative frequencies and averages allows one to find out the values of chances and expectations in the sense that the former converge to the latter with maximal chance. Information about absolute failures allows one to find out the truth values of default conditionals and counterfactuals in the sense that the former stabilize on the latter with alethic necessity. Convergence occurs if, and only if, the conjectured values get arbitrarily close to the correct value, which is compatible with them never reaching the correct value. Stabilization occurs if, and only if, the conjectured values are exactly right after finitely many steps, and continue to be so forever after. Stabilization implies, but is not implied by, convergence. Furthermore, given assumptions that allow us to relate chance and descriptive normality, stabilization with alethic necessity implies, but is not implied by, convergence with maximal chance.

In the concluding chapter 11 I will put the results of this book and the second volume into perspective. Chapters 3, 4, and 6 discuss the doxastic modality of (conditional) belief. Chapters 2 and 5 discuss the deontic modality of (conditional) obligation. Chapters 7, 8, and 9 turn to the alethic or metaphysical modalities of descriptive normality, necessity, and counterfactuality. Finally, chapter 10 adds the empirical modalities of absolute and relative failures. Combining all these modalities allows me to study what one should believe about what would have been the case given information about how often things have failed to occur.

As mentioned, except for our having wants and needs, and our holding beliefs, the first three modalities have no reality in any sense that is independent of our talking and thinking about reality – that is, our way of conceptualizing reality. Perhaps surprisingly, the same is true for the empirical modalities of absolute and relative failures. The latter report how often something occurs, and fails to occur, and this depends on some representation that allows us to identify something as an event (or object or individual), as well as to count several events (or objects or individuals) as instantiating one type.

Yet just as there are no coulds or shoulds or woulds in reality, nor any nots or ands or ors, there is no many there either. Whether something exists may not depend on the language or system of representation one finds oneself using (and which, in general, is not chosen freely). However, what and who exists does so depend. You may see four people entering a room, I see one group. I see four modalities of the same kind, you may see one big mess. Fortunately there is no right or wrong here, just a more or less useful for various purposes.

In addition, chapter 11 will provide a brief sketch of a qualitative decision theory in terms of belief and regret. Both of these notions will be subject to the normative requirements of ranking theory.
Finally, throughout this book and the second volume we will be accompanied by the ideal doxastic agent Ida, named after my first philosophy teacher. Ida likes to travel the capitals of the world and cares a lot about the weather. Ida usually has coffee in the morning, and is tired at noon if she does not. She has lunch in the park if the weather is nice, and enjoys wine in the evening whenever possible.
Chapter 2

Belief First

In this chapter I will first discuss which agents I am focusing on and which ends I am assuming them to have. Then I will briefly describe how this relates to conditional belief and belief revision. I rely on Huber (2013a).

2.1 Ideal doxastic agents

There are at least two senses of ‘should,’ or ‘ought.’ In general, what we can call the wide sense of ‘ought’ expresses what one values. Accordingly, Schroeder (2011) calls it the evaluative ‘ought.’ On the instrumentalist view adopted in this book and the second volume, the wide sense of ‘ought’ expresses someone’s ends. On this view, the difference between ‘ought’ and ‘must’ is the difference between a mere want and a genuine need. Every proposition can be in the scope of the wide sense of ‘ought.’ On the instrumentalist view, this is so because there are no constraints on what ends one may have.

The difference between the wide and narrow sense can perhaps be explained by reference to classical decision theory (Savage 1954). The latter distinguishes between states of the world, outcomes, and actions which are characterized as functions from states of the world to outcomes. The states of the world are the objects of the decision maker’s beliefs, and these beliefs of hers are represented by a subjective probability measure. The outcomes are the objects of her desires, and these desires of hers are represented by a utility or value function. The actions are the alternatives from which the decision maker can and has to choose. In this framework, the propositions in the scope of the wide sense of ‘ought’ are the outcomes that form the domain of the decision maker’s utility or value function.
CHAPTER 2. BELIEF FIRST

The wide sense of ‘ought’ is to be distinguished from what we can call its narrow sense, Schroeder (2011)’s deliberative ‘ought’ (that could also be called prescriptive). The latter expresses what one should, or ought to, do and applies only to actions. More specifically, the narrow sense of ‘ought’ applies only to the intention to take an action. On the instrumentalist view, this makes sense because intending to take an action is a means to attaining the end of actually taking the action. In classical decision theory, what is in the scope of the narrow sense of ‘ought’ are the actions that form the domain of the decision maker’s expected utility or value function. The latter is formed by combining the decision maker’s subjective probability measure and her utility or value function.

The wide and narrow sense of ‘ought’ can come into seeming conflict. One may have ends and beliefs to the effect that, in the wide sense, the poorest person should win the lottery, but that, in the narrow sense, she should not buy a ticket. This may be so because one holds the conditional belief that the poorest person will not win the lottery if she buys a ticket. Furthermore, the principle that ‘ought’ implies ‘can’ – that one cannot be required to do something that is not within one’s reach – applies only to the narrow sense of ‘ought.’ This principle holds for intentions to take actions. It does not, in general, hold for actions themselves, as these generally depend on conditions that are not within the agent’s control.

I am interested in how an ideal doxastic agent should organize her beliefs, and how she should revise her beliefs when she receives new information. Here ‘should’ is understood in its narrow sense. Thus, I am interested in how an ideal doxastic agent should intend to organize and revise her beliefs. These intentions to believe are what I am assuming to be under the ideal doxastic agent’s control, as required by the principle that ‘ought’ implies ‘can.’ As a consequence, issues of doxastic involuntarism, i.e. the alleged inability to form beliefs at will, do not arise. For intentions – or willings – to believe can be formed at will, even if beliefs themselves cannot be so formed.

I call the agent a doxastic agent, as I am focusing on what she should do qua believer. What the agent should do qua believer is to hold certain beliefs, to refrain from holding other beliefs, and to revise her beliefs in certain ways if she receives new information. All of these requirements to believe make sense for the narrow sense of ‘ought’ because believing is an action. More specifically, believing is a cognitive action that is located in the agent’s mind or internal reality. For this reason we can also call her a cognitive agent. In contrast to this, it does not make sense to demand of an agent that she should, in the narrow sense of this term, hold certain knowledge – other than by demanding of her to hold certain beliefs. Therefore, I am not calling the agent an epistemic agent.
2.1. IDEAL DOXASTIC AGENTS

Knowledge does not figure in norms, or requirements, in the way belief does. This is so because knowing is not an action, cognitive or otherwise, but only the result of other actions and events. Some beliefs may also be held solely because they are the result of other actions or events – say, by being caused by experience. However, how to revise one’s beliefs once those experientially or otherwise caused beliefs are held is a question of which cognitive action to take. Thus, to the extent that epistemology is a normative discipline that studies what cognitive actions to take, it studies what and how to believe.

In the narrow sense of ‘ought’ we can require agents to (intend to) take only actions. Believing is, but knowing is not, an action in this sense. We can require Ida to believe that Vienna is the capital of Austria, and that Athens is not the capital of Greece. However, we cannot require Ida to know that Vienna is the capital of Austria, let alone that Athens is not the capital of Greece. Similarly, looking and listening are actions, but seeing and hearing are not. We can require Ida to look whether it is sunny, and to listen whether the birds are singing. We cannot require her to see that it is sunny, or to hear that the birds are singing.

For the same reason knowledge cannot figure in the main argument place – the consequent – of a conditional obligation: we cannot require Ida to know that Vienna is the capital of Austria given that she believes it to be, nor can we require her to not know that Athens is the capital of Greece given that she does not believe it to be. However, knowledge may figure as a condition in a conditional obligation: we can require Ida to believe that Vienna is the capital of Austria given that she knows it to be, and we can require her to not believe that Athens is the capital of Greece given that she does not know it to be. I do not subscribe to the latter requirement, though. One reason is that I am convinced that, whatever knowledge is (I take it to be truth plus certainty), strictly speaking, we never have any of it (although little in this book and the second volume depends on this conviction). What we have are true beliefs, and these are all we need: our curiosity is satisfied if we hold sufficiently informative beliefs, and we get the remaining benefits from the truth of the beliefs, as well as the firmness with which they are held.

The agent I am considering is not only doxastic, but also ideal in the sense that she does not suffer from any computational or other cognitive limitations. Among others, she gets to voluntarily decide what to believe and never forgets any of her beliefs. For such an agent the cognitive actions she intends to take are the cognitive actions she takes. Indeed, we may define an agent to be ideal if, and only if, every action she intends to take is an action she takes. So, the restriction to doxastic agents that are ideal allows me to ignore the distinction between cognitive actions an agent should intend to take, and cognitive actions she should take.
CHAPTER 2. BELIEF FIRST

2.2 Belief and ends

Ideal doxastic agents sometimes believe that some things are the case. Sometimes they believe that some things are not the case. Then we speak of “disbelief.” Sometimes they suspend judgment about whether or not something is the case and neither believe nor disbelieve that it is the case. Suspensions of judgment are relative to a question, but otherwise differ from beliefs not in kind, but in degree: they are the beliefs that are held with the least firmness, namely none at all. In a sense, then, to suspend judgment with respect to a question is to have an opinion on the matter, namely the neutral one of not believing any answer to the question. This is different for questions for which one lacks the relevant conceptual resources to fully understand them. These are not questions about which one suspends judgment. Instead, one has literally no opinion on the matter, not even the neutral one of suspending judgment.

Ida believes that Vienna is the capital of her native Austria. Ida disbelieves that Athens is the capital of Greece. Ida suspends judgment about whether or not Beijing is the capital of China. Suppose Ida’s only end is to have true beliefs. In this case a belief of hers is successful if, and only if, the content of this belief is true. It is unsuccessful if, and only if, the content of this belief is false. For the time being I am ignoring that it is often entire systems of beliefs, rather than individual beliefs, that are evaluated as successful or unsuccessful. This allows me to momentarily bracket questions such as whether the end of having true beliefs includes the end of having informative beliefs, and how the contents of beliefs are individuated. Given this end of hers, Ida’s belief that Vienna is the capital of her native Austria is successful because the content of this belief is true. On the other hand, her disbelief that Athens is the capital of Greece is unsuccessful. This is so because the content of her belief that Athens is not the capital of Greece is false. Finally, Ida’s suspending judgment about whether or not Beijing is the capital of China is neither successful nor unsuccessful.

A normative theory of belief, that is, a theory of rational belief, tries to capture how an ideal doxastic agent attains her doxastic ends. I will mainly focus on the end of believing truths, of holding beliefs whose contents are true. I will mainly assume that these contents are sufficiently informative to satisfy the agent’s curiosity – say, by answering all her questions, although I do not assume that curiosity must come in the form of questions. In the way I have formulated this end, it comprises the end of disbelieving falsehoods because disbeliefs have been formulated as beliefs that something is not the case. In chapter 5 we will refine this formulation, as well as add a clause to take into account suspensions of judgment.
2.2. BELIEF AND ENDS

There is a formulation of this end that says the following: an ideal doxastic agent has the end of believing the truth and of avoiding error or falsehood. In this formulation, the first part really says that an ideal doxastic agent has the end of holding beliefs whose contents are informative. The second part really says that she has the end of holding beliefs whose contents are true. This is particularly clear in the formulation given by James (1896: sct. VII; italics in the original):

We must know the truth; and we must avoid error.

Knowledge is generally assumed to be factive (Williamson 2000): we can know only true propositions. Suppose this is so. Then the first part of “our first and great commandments as would-be knowers” requires us to know many or informative propositions, rather than to know true propositions. It is the second part that requires us to hold true beliefs. And it is true beliefs we are required to hold, not true knowledge, as the latter is redundant if knowledge is factive. In the paragraph following this quote James substitutes – correctly, I think – belief for knowledge:

Believe truth! Shun error!

Suppose we do not only substitute belief for knowledge, but additionally drop the imperative formulation in favor of a declarative one. Then we arrive at the formulation of the end I am focusing on: to hold beliefs whose contents are true and sufficiently informative to satisfy the ideal doxastic agent’s curiosity. My project is to formulate the means she has to take in order to attain the end we are assuming her to have.

Two points are worth noting. First, whether it is transparent to an agent that she has a particular end does not matter for the question which means she should take to attain this end. Second, I am assuming, not requiring, the ideal doxastic agent to have the end of holding true and sufficiently informative beliefs. In other words, I am not claiming that the ideal doxastic agent should have this end. On the instrumentalist view adopted in this book, to say that, in the narrow sense of this term, the ideal doxastic agent should have this – or, for that matter, any other – end is to say that having this end is a means to attaining some other end of hers. She can be required to have the latter end in turn only if having it is a means to attaining yet another end of hers. And so on until we arrive at the ideal doxastic agent’s ultimate ends. These are the ends she has, not as means to attaining other ends of hers, but as ends in themselves. For this reason it is meaningless to ask whether the agent should have the ultimate ends she has. It is a descriptive, not a normative, question which ultimate ends an agent has. In combination with her abilities and limitations, their totality characterizes the agent if she is rational.
CHAPTER 2. BELIEF FIRST

2.3 Conditional belief and belief revision

On a synchronic level we consider how an ideal doxastic agent should organize her beliefs at a given moment in time under the assumption that her only end is to hold true beliefs that are sufficiently informative. On this level there is little, perhaps surprisingly little, to be said about how an ideal doxastic agent should organize her beliefs: she should not simultaneously believe and disbelieve that something is the case, nor should she simultaneously believe and refrain from believing that something is the case. These constraints are known as “consistency.” They are just about all there is to be said about how an ideal doxastic agent should organize her beliefs at a given moment in time.

Ida may be lucky and start out with many true beliefs, but that is luck, not rationality. Ida may be unlucky and start out with many false beliefs, but that is bad luck, not irrationality. An agent is rational if, and only if, she does what she ought to do. On the instrumentalist view adopted in this book and the second volume, she is rational if, and only if, she takes the means to her ends. Unless Ida’s beliefs are not consistent, whether or not she is rational is not determined by what or how she believes at a given moment in time. It is determined by how she revises her beliefs across time when she receives new information.

New information sometimes just pops up, as when people look out of the window and cannot help but form the belief that it is sunny or when computer programs are fed new data by a user. New information sometimes is deliberately and actively sought by the ideal doxastic agent, say, because her ends are not met. The latter is the case if Ida is so curious as to desire an answer to the question whether or not Beijing is the capital of China. In order to satisfy her curiosity she needs to believe one of the answers to this question (it does not have to be the true answer). She does so by seeking new information in order to subsequently revise her beliefs. For instance, she may look it up on the internet.

Clifford (1877: part I) boldly claims that

it is wrong always, everywhere, and for anyone, to believe anything upon insufficient evidence.

And he continues by adding the following evaluation:

If a [hu]man, holding a belief […], keeps down and pushes away any doubts [and] purposely avoids the reading of books […] – the life of that [hu]man is one long sin against [hu]mankind.
Clifford’s second claim seems to be that it is wrong (always, everywhere, and for anyone) to ignore new information or “evidence,” and maybe even to not actively seek new information. Clifford's first claim may well be true if, and only if, it is restricted to ideal doxastic agents with the appropriate ends. His second claim, however, addresses a question I want to bracket. I want to do so in much the same way Hume (1748: sect. 10, part 1) does when he writes:

[a] wise [hu]man [...] proportions [her or] his belief to the evidence.

For the time being, let us ignore the numbers alluded to in Hume’s “proportions.” Then we note that Hume does not require a wise human to gather “evidence” if she does not already have it. Hume merely requires her to believe according to the information she happens to have. This means he restricts the rationality of beliefs to their revision, and remains silent on the information gathering process.

Adjusted to the present context Hume seems to claim the following: an ideal doxastic agent whose only end is to hold true and sufficiently informative beliefs, and who believes the new information she receives, is rational only if she revises her beliefs according to this new information. She is irrational if she revises her beliefs contrary to this new information. I subscribe to these claims.

In the previous section I have replaced James (1896)'s imperative formulation with a declarative one by assuming rather than requiring the ideal doxastic agent to have the end of holding beliefs that are true and sufficiently informative. Similarly, I have replaced Clifford (1877)'s evaluative wording with a descriptive one by assuming the ideal doxastic agent to believe the information she receives rather than calling her names for not doing so. Much like Hume (1748) I will leave unspecified how the ideal doxastic agent has arrived at her information, and how she comes to have the end of holding true and sufficiently informative beliefs. In contrast to my focus on doxastic agents that are ideal these two restrictions really do restrict: I have next to nothing to say about what real or ideal doxastic agents should do if their ends do not relate to the one I am focusing on. And I say next to nothing about when real or ideal doxastic agents should gain new information or how they should go about the information gathering process.

This restriction to the organization and revision of beliefs is due to my view that the normative aspects of the information gathering process pertain to non-cognitive actions such as carrying out an experiment or opening one’s eyes (a few remarks about these non-cognitive actions can be found in Brössel & Huber 2015: 744ff). I assume the cognitive aspects of the information gathering process such as forming the belief that one has a certain experience to be descriptive, not normative (subject to the remarks in section 4.2).
What I will say about how an ideal doxastic agent should revise her beliefs if she receives new information essentially depends on the notion of a conditional belief. Initially Ida suspends judgment about whether or not it will be sunny on Wednesday, and whether or not she will have lunch in the park. In addition, she firmly holds the conditional belief that she will have lunch in the park if it is sunny on Wednesday. Subsequently Ida comes to believe that it will be sunny on Wednesday. In this case she should stop suspending judgment and form the belief that she will have lunch in the park.

Why should she do so? She should do so because, by assumption, she believes the new information that it will be sunny on Wednesday. And, per request, she should hold on to her conditional belief that she will have lunch in the park if it is sunny on Wednesday. If Ida met this assumption, as well as satisfied this request, but she did not revise her beliefs as indicated, she would violate another pair of consistency constraints: to not simultaneously believe and disbelieve that something is the case given that something else is; nor to simultaneously believe and refrain from believing that something is the case given that something else is. Just as Ida’s beliefs should be consistent, her conditional beliefs should be conditionally consistent.

Consistency, in its conditional as well as non-conditional variants, still is just about all there is to be said about how an ideal doxastic agent should organize her beliefs at a given moment in time. However, now that the agent believes the new information, consistency has an impact on how she should revise her beliefs across time: Ida must do something in order to restore consistency. What she must do, and has done, may easily have gone unnoticed, though.

Be consistent in your beliefs and conditional beliefs at any moment in time! Hold on to your conditional beliefs across time if their conditions are the logically strongest propositions which are directly affected by the new information (section 4.2 will make this notion clear)! This is just about all there is to be said about how an ideal doxastic agent should organize her beliefs synchronically, as well as how she should revise her beliefs diachronically if she receives new information. Here the agent is assumed to have the end of holding beliefs that are true and sufficiently informative, and to believe the new information she receives. It remains to be said what it is for her to hold a conditional belief.

To be sure, things get a little bit more complicated once we take into account Hume’s “proportions.” Real and ideal doxastic agents alike hold some beliefs more firmly than others: Ida’s belief that it will or will not be sunny on Wednesday is held more firmly than her conditional belief that she will have lunch in the park if it is sunny on Wednesday. This conditional belief of hers in turn is held more
firmly than her “belief” that Beijing is the capital of China, a belief she holds with firmness zero.

More to Hume’s point, new information is not always of the same quality in the sense that different sources of information are not always deemed to be equally reliable by the ideal doxastic agent. Ida’s belief that it will be sunny on Wednesday will be held more firmly when she looks out of the window and seems to see that it is sunny than when a friend she trusts tells her so than when the weatherperson she deems unreliable predicts so. However, the basic idea remains the same: when she receives new information she believes, an agent should revise her beliefs by holding on to those of her conditional beliefs whose conditions are the logically strongest propositions which are directly affected by the new information. Consistency does the rest.

A variant of the reverse of this idea has been suggested by Ramsey (1929: 15a):

If two people are arguing ‘If p will q?’ and are both in doubt as to p, they are adding p hypothetically to their stock of knowledge and arguing on that basis about q.

This quote has inspired the idea that belief revision is a guide to the believability or assertability of indicative conditionals. Identifying indicative conditionals with conditional beliefs and reversing this idea delivers the first part of my proposal: conditional beliefs guide the revision of beliefs.

The second part of my proposal can also be found in the quote by Ramsey, which continues thus:

so that in a sense ‘If p, q’ and ‘If $p, \neg q$’ are contradictories.

The second part of my proposal is the requirement that conditional beliefs should be non-contradictory or consistent “in a sense.” This sense is consistency extended to include its conditional variant.

What Ramsey did not have is the right theory of conditional belief. This theory was introduced only in Spohn (1988).

Spohn (1988)’s theory includes the requirement that, when she receives new information, the ideal doxastic agent should hold on to those conditional beliefs of hers whose conditions are the logically strongest propositions which are directly affected by the new information. Thus it comprises the first part of my proposal: that conditional beliefs guide the revision of beliefs. It also comprises the second part of my proposal: consistency in its non-conditional and conditional form.
Needless to say, I do, of course, not claim credit for Spohn (1988)’s theory. All good things come in threes, though.

Consider again the quote by Ramsey. I cannot say whether he distinguished between indicative conditionals, default conditionals, and counterfactuals when he wrote this passage. However, he added the precautionary clause “and are both in doubt as to p.” Perhaps his intention was to restrict the discussion to indicative conditionals, and he added the precautionary clause because he took it to imply that both people assign a subjective probability smaller than one, but greater than zero to p. Perhaps he intended the discussion to include indicative conditionals, as well as counterfactuals, and he added the precautionary clause because he took it to imply that neither of the two people disbelieves p, and because he was aware that indicative conditionals and counterfactuals go together in this case. Perhaps there was another reason, or none at all.

Either way, the third part of my proposal turns Ramsey’s precautionary clause into a positive requirement. As an approximation, suppose that an ideal doxastic agent is in doubt as to the antecedent of a default conditional in the sense that she suspends judgment about this antecedent. Suppose further she is certain of the default conditional itself, but no “overriding” information. Then she should hold the conditional belief in its consequent given its antecedent. In particular, she should hold this conditional belief if she is certain of the default conditional because she is certain of the corresponding counterfactual.

As before, things get more complicated once we take into account Hume’s “proportions.” The basic idea remains the same, though, and it will prove to be a powerful one: together with Spohn (1988)’s theory and the assumption about the truth conditions of default conditionals and counterfactuals from the previous chapter, the third part of my proposal will deliver the logic of default conditionals and counterfactuals. This illustrates how a metaphysical thesis can be thought of as a necessary condition for the possibility of satisfying norms from epistemology, and, hence, the possibility of attaining certain ends. Pursuing the end of holding true and sufficiently informative beliefs, as well as other ends to be introduced later, commits an ideal doxastic agent to the metaphysical thesis that descriptive normality behaves a certain way, and, given their truth conditions, that default conditionals and counterfactuals satisfy certain logical principles.

So far I have been writing as if conditional beliefs could be accessed and controlled in the way non-conditional beliefs can, and I will continue to do so throughout the expository chapters 3 and 4. In particular, so far I have been writing as if conditional beliefs could be the subject of (prescriptive) norms in the way non-conditional beliefs can: hold this belief, do not hold that belief! However,
2.3. CONDITIONAL BELIEF AND BELIEF REVISION

this presupposes certain assumptions about the nature of conditional belief that are false on the conditional theory of conditional belief introduced in chapter 5.

Spohn (1988)’s theory tells us how non-conditional and conditional beliefs ought to behave, i.e. what “the laws of belief” (Spohn 2012) are. Through the “difference formula” (that is presented in chapter 4, and is analogous to the ratio formula in probability theory) it also tells us how non-conditional and conditional beliefs interact. However, with the exception of a few remarks (Spohn 2012: 185ff), it does not tell us what conditional beliefs are. This lacuna is filled by the conditional theory, which characterizes the nature of conditional belief in terms of non-conditional belief and counterfactuals. It follows from the conditional theory that, when she receives new information, the ideal doxastic agent holds on to those of her conditional beliefs whose conditions are the logically strongest propositions which are directly affected by the new information. In other words, the conditional theory turns the normative requirement of holding on to certain of her conditional beliefs into a descriptive consequence. In return, the conditional theory turns the difference formula from a descriptive assumption or definition into a normative requirement. On the conditional theory, to say that the agent should hold on to her conditional beliefs is to say that she should revise her non-conditional beliefs in such a way that they align with her conditional beliefs (in the sense of the difference formula). Requirements for conditional beliefs become requirements for non-conditional beliefs.

As mentioned, I will continue to write as if conditional beliefs could be the subject of requirements in the way beliefs can. However, it is important to keep in mind that, on the conditional theory, requirements for conditional beliefs are requirements for non-conditional beliefs. The reason this is important pertains again to our instrumentalist understanding of normativity. On this understanding, (prescriptive) norms are hypothetical imperatives that are – perhaps implicitly, but always and essentially – dependent on an end the imperative “hypothesizes.” This end needs to be meaningful for the action the imperative says one should take. The end we assume the agent to have is holding true beliefs that are sufficiently informative. This end is meaningful for non-conditional belief. However, this end is meaningless for conditional belief (on the conditional theory, as well as any other theory that rejects the view that a conditional belief is a non-conditional belief in a unique sentence or proposition that has a truth value).

Thus, we have come full circle: in the end, what matters are ends. But I am way ahead. Let us begin at the beginning.
Chapter 3

Belief Revision

In this chapter I will first introduce the AGM theory of belief revision. Then I will focus on the problem of iterated belief revisions. This chapter heavily relies on Huber (2013b; 2019).

3.1 The AGM theory of belief revision

Belief revision theory is the study of how an ideal doxastic agent should organize her beliefs and conditional beliefs at a given moment in time, and how she should revise these beliefs across time when she receives new information. Among other things, Ida believes that it will rain on Tuesday, that it will be sunny on Wednesday, and that weather forecasts are always right. Belief revision theory tells Ida how to revise her beliefs when she receives the information that the weather forecast for Tuesday and Wednesday is rain. As we will see, this depends on the details of her doxastic state. Under one way of filling in these details, she should keep her belief that it will rain on Tuesday and give up her belief that it will be sunny on Wednesday. To state in a general and precise manner how Ida should revise her beliefs when she receives new information, we need a representation of her doxastic state and the new information she receives.

On one reading, belief revision theory models belief as a qualitative attitude of the agent towards the sentences or propositions she understands and has an opinion on, i.e. that are in her language: she believes a proposition, she disbelieves the proposition by believing its negation, or she suspends judgment about the proposition by neither believing nor disbelieving it. On another reading, it models belief as a comparative attitude: she believes a proposition at least as much as
CHAPTER 3. BELIEF REVISION

another (or the same).

This is different in the theory of subjective probability which is also referred to as Bayesianism (Easwaran 2011a; b, Weisberg 2011). Here belief is modeled as a quantitative attitude of the agent towards the sentences or propositions in her language: she believes a proposition to a specific degree, namely her degree of belief in the proposition. In other words, the Bayesian takes into account Hume’s “proportions.” As we will see, to adequately model iterated belief revisions, belief revision theory also has to model the agent’s beliefs in a quantitative, or numerical, way. Thus, the Bayesian is right to follow Hume in this regard. In addition, the Bayesian holds that Hume’s “proportions” should obey the probability calculus. However, for the end of holding true and sufficiently informative beliefs that we are assuming Hume’s human to have, it will turn out to be wise to proportion her beliefs according to the rules of a different calculus.

The AGM theory of belief revision derives its name from the seminal paper Alchourrón & Gärdenfors & Makinson (1985). Comprehensive overviews can be found in Gärdenfors (1988), Gärdenfors & Rott (1995), and Rott (2001). One version of the AGM theory represents the ideal agent’s doxastic state by a set of sentences from a formal language, her belief set, together with an entrenchment ordering over these sentences. The latter represents the details of her doxastic state: it represents – in a comparative way – how firmly the agent holds the beliefs in her belief set. The new information is represented by a single sentence.

The AGM theory distinguishes between the easy case – called expansion – and the general case – called revision. In expansion the new information does not contradict the agent’s old belief set and is simply added. In revision the new information may contradict the agent’s old belief set. The general case of revision is difficult because the agent has to turn her old belief set, which is required to be consistent, into a new belief set that contains the new information and still is consistent. One way to deal with the general case is in two steps. In a first step – called contraction – the old belief set is cleared of everything that contradicts the new information. In a second step the agent simply expands by adding the new information. This means the difficult doxastic task is handled by contraction, which turns the general case of revision into the easy case of expansion.

A formal language L is defined recursively as follows. First, L contains the contradictory sentence \bot and all elements of a given countable set of propositional letters $PV = \{p, q, r, \ldots\}$. Second, whenever α and β are sentences of L, then so are the negations of α and of β, $\neg\alpha$ and $\neg\beta$, respectively, as well as the conjunction $\alpha \land \beta$. Third, nothing else is a sentence of L.

The new information is represented as a single sentence α from L.
The ideal agent’s doxastic state is represented as a set of sentences from \mathcal{L}, her belief set \mathcal{B}, plus an entrenchment ordering (over \mathcal{L}) for \mathcal{B}. The entrenchment ordering \preceq is defined relative to the agent’s belief set. It does most of the work in a revision of her beliefs by ordering them according to how reluctant she is to give them up: the more entrenched a belief, the more reluctant she is to give it up.

Suppose the ideal doxastic agent receives new information that contradicts her belief set. Since she believes the new information, and since the new belief set that results from the revision must be consistent, some of her old beliefs have to go. The entrenchment ordering determines which beliefs have to go when: the least entrenched beliefs have to go first. If giving up those is not enough to restore consistency, the beliefs next in the entrenchment ordering have to go next. And so on. The beliefs that would be given up last are the most entrenched ones. Maximality requires these to be the tautological sentences. They must always be believed and never be given up, as doing so cannot restore consistency and the agent wants to hold many beliefs. On the other end of the spectrum are the least entrenched sentences. According to Minimality these must be the sentences the agent does not believe to begin with. These sentences do not belong to her belief set, so are gone before the revision process has even begun.

Suppose one sentence logically implies another. According to Dominance the latter sentence must not be less entrenched than the former. This means giving up her belief in the latter sentence requires the agent to also give up her belief in the former. Dominance implies that the entrenchment ordering must be reflexive: every sentence must be at least as entrenched as itself. Conjunctivity says that two sentences must not both be more entrenched than their conjunction. This means the agent must not give up her belief in a conjunction without giving up her belief in at least one of the conjuncts. Conjunctivity and Dominance imply that the entrenchment ordering must be connected: any two sentences must be comparable to each other in terms of their comparative entrenchment. That is, either the first sentence is at least as entrenched as the second, or the second sentence is at least as entrenched as the first, or both. Finally, to ensure that the entrenchment ordering is a “well-behaved” ordering relation that gives rise to belief sets, it is required to be transitive by Transitivity: if one sentence is at least as entrenched as a second, and the second sentence is at least as entrenched as a third, then the first sentence must be at least as entrenched as the third.

We can state these requirements more precisely as follows. Let \vdash be the logical consequence relation on \mathcal{L}, and let $\text{Cn}(\mathcal{B}) = \{\alpha \in \mathcal{L} : \mathcal{B} \vdash \alpha\}$ be the set of logical consequences of \mathcal{B}. An entrenchment ordering \preceq for \mathcal{B} has to satisfy the following postulates for all sentences $\alpha, \beta, \text{ and } \gamma$ from the agent’s formal language \mathcal{L}.
≤1. If $\alpha \preceq \beta$ and $\beta \preceq \gamma$, then $\alpha \preceq \gamma$. Transitivity

≤2. If $\beta \in \text{Cn} (\{\alpha\})$, i.e. if $\{\alpha\} \vdash \beta$, then $\alpha \preceq \beta$. Dominance

≤3. $\alpha \preceq \alpha \land \beta$ or $\beta \preceq \alpha \land \beta$. Conjunctivity

≤4. Suppose $\bot \notin \text{Cn} (B)$, i.e. $B \not\vdash \bot$. $\alpha \preceq \bot$ if, and only if, for all δ from L: $\alpha \preceq \delta$. Minimality

≤5. If $\delta \preceq \alpha$ for all δ from L, then $\alpha \in \text{Cn} (\emptyset)$, i.e. $\emptyset \vdash \alpha$. Maximalit

The work that is done by the entrenchment ordering in a revision of the agent’s beliefs can also be described differently in terms of expansion $\check{+}$, revision $\check{*}$, and contraction $\check{-}$ operators. These turn belief sets and new information into new belief sets. Formally, they are functions from $\wp (L) \times L$ into $\wp (L)$. We will primarily be interested in the restrictions of these operators to a fixed belief set B. This way we can think of them as we think of entrenchment orderings, namely as representations of the ideal agent’s doxastic state at a given moment in time.

Expansion $\check{+}$ turns each old belief set $B \subseteq L$ and sentence $\alpha \in L$ into a new belief set $\text{Cn} (B \cup \{\alpha\})$. This is the easy case described earlier about which there is little more to be said. The difficult and more interesting case is revision $\check{*}$. It turns each old belief set $B \subseteq L$ and sentence $\alpha \in L$ into a new belief set $\text{Cn} (B \cup \{\alpha\})$ and is required to satisfy a number of postulates.

Closure requires revised belief sets to be closed under the logical consequence relation: after the revision, the agent ought to believe all (and only) the logical consequences of the revised belief set. After all, she wants to hold many beliefs (that are true). Given Closure, the assumption that belief sets are sets formulates part two of our non-conditional consistency requirement from section 2.3: the agent should not simultaneously believe and refrain from believing that something is the case. Congruence is similar in spirit to Closure and requires that it is the content of the new information received, and not its particular formulation, that determines what is added to and removed from the agent’s belief set in a revision.

Although stated as a requirement, Success formulates our assumption from section 2.3 that the agent believes the new information she receives. It requires her to add the new information to the revised belief set – and, given Closure, all sentences the new information logically implies. Consistency formulates part one of our non-conditional consistency requirement from section 2.3: the agent should not simultaneously believe and disbelieve that something is the case. It requires the revised belief set to be consistent as long as the new information is consistent.
3.1. THE AGM THEORY OF BELIEF REVISION

(As an aside, the formulation of our conditional consistency requirement from section 2.3 will have to wait until the next chapter.)

The remaining postulates all formulate different aspects of the idea that, when revising her belief set by new information, the ideal doxastic agent should add and remove as few beliefs as possible, subject to the constraints that the resulting belief set is consistent and that the new information has been added successfully. For \textit{adding} new beliefs contains the risk of failing to shun error; and \textit{removing} beliefs contains the risk of failing to believe the truth.

Inclusion says that, when revising her belief set, the agent should not form any new beliefs that she does not also form when she simply adds the new information. Preservation says that, when revising her belief set by new information that does not contradict it, the agent should hold on to, or preserve, all beliefs in her belief set. Conjunction 1 requires that, when revising her belief set by a conjunction, the agent add \textit{only} beliefs that she also adds when first revising her belief set by one of the two conjuncts, and then adding the second conjunct. Finally, Conjunction 2 requires that, when revising her belief set by a conjunction, the agent add \textit{all} beliefs that she adds when first revising her belief set by one of the two conjuncts, and then adding the second conjunct – provided the second conjunct is consistent with the result of revising her belief set by the first conjunct.

We can state these requirements more precisely. A revision operator \ast has to satisfy the following postulates for all sets of sentences B of the ideal doxastic agent’s formal language L and all sentences α and β from L.

\begin{itemize}
 \item \textbf{Closure} \hspace{1cm} $B \ast \alpha = \text{Cn}(B \ast \alpha)$.
 \item \textbf{Success} \hspace{1cm} $\alpha \in B \ast \alpha$.
 \item \textbf{Inclusion} \hspace{1cm} $B \ast \alpha \subseteq \text{Cn}(B \cup \{\alpha\})$.
 \item \textbf{Preservation} \hspace{1cm} If $\neg \alpha \notin \text{Cn}(B)$, i.e. if $B \not\vdash \neg \alpha$, then $B \subseteq B \ast \alpha$.
 \item \textbf{Congruence} \hspace{1cm} If $\text{Cn}(\{\alpha\}) = \text{Cn}(\{\beta\})$, i.e. if $\{\alpha\} \vdash \beta$ and $\{\beta\} \vdash \alpha$, then $B \ast \alpha = B \ast \beta$.
 \item \textbf{Consistency} \hspace{1cm} If $\neg \alpha \notin \text{Cn}(\emptyset)$, i.e. if $\{\alpha\} \not\vdash \bot$, then $\bot \notin B \ast \alpha$.
 \item \textbf{Conjunction 1} \hspace{1cm} $B \ast (\alpha \land \beta) \subseteq \text{Cn}((B \ast \alpha) \cup \{\beta\})$.
 \item \textbf{Conjunction 2} \hspace{1cm} If $\neg \beta \notin B \ast \alpha$, i.e. (given *1) if $B \ast \alpha \not\vdash \neg \beta$, then $\text{Cn}((B \ast \alpha) \cup \{\beta\}) \subseteq B \ast (\alpha \land \beta)$.
\end{itemize}
CHAPTER 3. BELIEF REVISION

The two-step view of revision described earlier is known as the Levi identity (Levi 1977). It has the ideal doxastic agent first contract her old belief set \(B \) by the negation of the new information, \(\neg \alpha \), thus making it consistent with the new information (as well as everything logically implied by the new information). Then it has her expand the result \(B \neg \neg \alpha \) by adding the new information \(\alpha \):

\[
\mathcal{B} \ast \alpha = \text{Cn} ((\mathcal{B} \neg \neg \alpha) \cup \{\alpha\})
\]

The Levi identity puts contraction \(\neg \) center stage of the belief revision process. Contraction turns each old belief set \(\mathcal{B} \subseteq \mathcal{L} \) and sentence \(\alpha \in \mathcal{L} \) into a contracted belief set \(\mathcal{B} \neg \alpha \) that is cleared of \(\alpha \) (as well as everything logically implying \(\alpha \)).

A contraction operator \(\neg \) has to satisfy the following postulates for all sets of sentences \(\mathcal{B} \) of the agent’s language \(\mathcal{L} \) and all sentences \(\alpha \) and \(\beta \) from \(\mathcal{L} \).

\[\begin{align*}
\neg 1. & \quad \mathcal{B} \neg \alpha = \text{Cn} (\mathcal{B} \neg \alpha). & \text{Closure} \\
\neg 2. & \quad \text{If } \alpha \notin \text{Cn} (\emptyset), \text{ i.e. if } \emptyset \nvdash \alpha, \text{ then } \alpha \notin \text{Cn} (\mathcal{B} \neg \alpha). & \text{Success} \\
\neg 3. & \quad \mathcal{B} \neg \alpha \subseteq \text{Cn} (\mathcal{B}). & \text{Inclusion} \\
\neg 4. & \quad \text{If } \alpha \notin \text{Cn} (\mathcal{B}), \text{ i.e. if } \mathcal{B} \nvdash \alpha, \text{ then } \mathcal{B} \neg \alpha = \mathcal{B}. & \text{Vacuity} \\
\neg 5. & \quad \text{If } \text{Cn} (\{ \alpha \}) = \text{Cn} (\{ \beta \}), \text{ i.e. if } \{ \alpha \} \vdash \beta \text{ and } \{ \beta \} \vdash \alpha, \text{ then } \mathcal{B} \neg \alpha = \mathcal{B} \neg \beta. & \text{Congruence} \\
\neg 6. & \quad \text{Cn} (\mathcal{B}) \subseteq \text{Cn} ((\mathcal{B} \neg \alpha) \cup \{\alpha\}). & \text{Recovery} \\
\neg 7. & \quad (\mathcal{B} \neg \alpha) \cap (\mathcal{B} \neg \beta) \subseteq \mathcal{B} \neg (\alpha \land \beta). & \text{Conjunction 1} \\
\neg 8. & \quad \text{If } \alpha \notin \mathcal{B} \neg (\alpha \land \beta), \text{ i.e. (given } \neg 1) \text{ if } \mathcal{B} \neg (\alpha \land \beta) \nvdash \alpha, \text{ then } \mathcal{B} \neg (\alpha \land \beta) \subseteq \mathcal{B} \neg \alpha. & \text{Conjunction 2}
\end{align*}\]

As before, Closure is a necessary means to attain the end of holding many beliefs (that are true). This time it requires contracted belief sets to be closed under the logical consequence relation: after the contraction, the agent should believe all (and only) the logical consequences of the contracted belief set. Given Closure the assumption that belief sets are sets again formulates part two of our non-conditional consistency requirement from section 2.3. Congruence is still similar in spirit to Closure and now requires that it is the content of the information to be removed, and not its particular formulation, that determines what is removed from the agent’s belief set in a contraction.
3.1. THE AGM THEORY OF BELIEF REVISION

Success is a negative formulation, in terms of contraction rather than revision, of our assumption from section 2.3 that the agent believes the new information. It is again stated as a requirement and demands that, in contracting her belief set by a non-tautological sentence, the agent remove this sentence from her belief set – and, given Closure, all sentences logically implying it. Inclusion requires that, in contracting her belief set, the agent not add any new beliefs.

The remaining postulates all formulate different aspects of the idea that, when contracting her belief set by a sentence, the agent should remove as few beliefs as possible, subject to the constraints that the resulting belief set is consistent and that the sentence to be removed, together with all sentences logically implying it, is removed successfully. The reason is that she has the end of holding true beliefs that are sufficiently informative. Vacuity requires the agent to leave her belief set unchanged when she contracts it by a sentence that is not even part of her belief set to begin with. Recovery requires that, when she contracts her belief set by a sentence, she remove so few beliefs that adding the removed sentence again afterwards allows her to recover all previously removed beliefs.

Conjunction 1 says that, when contracting her belief set by a conjunction, the agent should not remove any beliefs that she does not also remove when she contracts her belief set by one or the other of the two conjuncts alone. Finally, Conjunction 2 requires the agent to contract as follows: if she removes a conjunct in contracting her belief set by a conjunction, then she must not remove any belief in contracting her belief set by this conjunct that she does not also remove in contracting her belief set by the entire conjunction. The idea behind the last two postulates is that giving up her belief in one of its conjuncts is all the agent needs to do in order to give up her belief in an entire conjunction.

The Levi identity turns each contraction operator $\dot{\cdot}$ satisfying $\dot{\cdot}1\dot{\cdot}8$ into a revision operator \ast satisfying $\ast1\ast8$. The converse is true of the Harper identity (Harper 1976a). The latter has the ideal doxastic agent first revise her old belief set B by the negation of the new information, $\neg\alpha$. Then it has her remove everything from the result $B \ast \neg\alpha$ that was not already also a logical consequence of the old belief set B:

$$B' = (B \ast \neg\alpha) \cap Cn(B)$$

If we have the ideal doxastic agent's belief set B, we can – with Rott (1991) – use her entrenchment ordering \preceq for B to define her revision operator \ast restricted to B as follows: for all sentences α in \mathcal{L},

$$B \ast \alpha = Cn(\{\beta \in \mathcal{L} : \neg\alpha < \beta\} \cup \{\alpha\})$$

Here $\alpha < \beta$ holds if, and only if, $\alpha \preceq \beta$, but not also $\beta \preceq \alpha$, i.e. $\beta \not\preceq \alpha$.

The idea behind this equation is this. When the agent wants to revise her old belief set \(B \) by the new information \(\alpha \) in accordance with postulates \(\ast 1-\ast 8 \), she first has to clear \(B \) of \(\neg \alpha \), as well as everything that is as entrenched as, or less entrenched than, \(\neg \alpha \). For instance, \(B \) also has to be cleared of everything that logically implies \(\neg \alpha \). However, if her entrenchment ordering \(\preceq \) for \(B \) satisfies postulates \(1 \leq \preceq \leq 5 \), all sentences \(\beta \) that are more entrenched than \(\neg \alpha \) can and, hence, should be preserved. This gives us the “reduced belief set”

\[
\{ \beta \in \mathcal{L} : \neg \alpha \prec \beta \}.
\]

Next the agent has to add the new information \(\alpha \). This gives us the set of sentences

\[
\{ \beta \in \mathcal{L} : \neg \alpha \prec \beta \} \cup \{ \alpha \}.
\]

Finally, she must add all sentences that are logically implied by the reduced belief set together with the new information. As shown by Gärdenfors (1988), as well as Gärdenfors \& Makinson (1988), and by using a result by Rott (1991), one can then prove the following “representation theorem.”

Theorem 1 (Gärdenfors 1988, Gärdenfors \& Makinson 1988) Let \(\mathcal{L} \) be some formal language. For each set of sentences \(B \subseteq \mathcal{L} \) and each entrenchment ordering \(\preceq \) for \(B \) satisfying \(1 \leq \preceq \leq 5 \) there is a revision operator \(\ast \) restricted to \(B \) – i.e., a function from \(\{ B \} \times \mathcal{L} \) into \(\wp(\mathcal{L}) \) satisfying \(\ast 1-\ast 8 \) restricted to \(B \) – such that for all sentences \(\alpha \in \mathcal{L} \):

\[
B \ast \alpha = \text{Cn}(\{ \beta \in \mathcal{L} : \neg \alpha \prec \beta \} \cup \{ \alpha \})
\]

For each revision operator \(\ast \) from \(\wp(\mathcal{L}) \times \mathcal{L} \) into \(\wp(\mathcal{L}) \) satisfying \(\ast 1-\ast 8 \) and each set of sentences \(B \subseteq \mathcal{L} \) there is an entrenchment ordering \(\preceq \) for \(B \) satisfying \(1 \leq \preceq \leq 5 \) such that for all sentences \(\alpha \in \mathcal{L} \):

\[
B \ast \alpha = \text{Cn}(\{ \beta \in \mathcal{L} : \neg \alpha \prec \beta \} \cup \{ \alpha \})
\]

This theorem states that its equation translates the postulates for entrenchment orderings into the postulates for revision operators, and conversely. This means revision operators can be represented by entrenchment orderings, and conversely. A different interpretation of this theorem says that its equation renders the agent’s entrenchment ordering’s obeying of postulates \(1 \leq \preceq \leq 5 \) a means to attain the end of her revision operator’s satisfying postulates \(\ast 1-\ast 8 \); and that it renders her revision operator’s satisfying postulates \(\ast 1-\ast 8 \) a means to attain the end of her entrenchment ordering’s obeying of postulates \(1 \leq \preceq \leq 5 \).

An analogous theorem holds for the relationship between the postulates for entrenchment orderings and the postulates for contraction operators.
3.2 Systems of spheres

There is a different way of representing postulates *1-*8 for revision operators * due to Grove (1988). Similar to Lewis’ (1973a) semantics for counterfactuals, which we will discuss in chapter 7, it uses “systems of spheres” that are defined on a set of possible worlds instead of entrenchment orderings that are defined on a formal language.

A set of possible worlds can be thought of as a set of complete, or maximally specific, descriptions of the way reality could be. One approach, used by Grove (1988), is to identify possible worlds with maximally consistent sets of sentences from the agent’s language \mathcal{L}. These are consistent sets of sentences that become inconsistent already if a single new sentence is added. Another approach is to take possible worlds as primitive. For present purposes we do not have to take a stance on what possible worlds are. I will assume that we are given a non-empty set of possible worlds $W_{\mathcal{L}}$ relative to which we interpret the sentences from \mathcal{L}.

In order to state Grove (1988)’s approach it will be useful to have the following notation. $\left[\alpha\right] = \{w \in W_{\mathcal{L}} : w \models \alpha\}$ is the proposition expressed by the sentence α, i.e. the set of possible worlds w in which α is true, $w \models \alpha$. If $W_{\mathcal{L}}$ is the set of maximally consistent sets of sentences in \mathcal{L}, $w \models \alpha$ holds if, and only if, $\alpha \in w$. If possible worlds are taken as primitive, the truth relation \models has to be analyzed differently. Either way, there may be sets of possible worlds, or propositions, $B \subseteq W_{\mathcal{L}}$ that are not expressed by any sentence α from \mathcal{L}. (For the purposes of this chapter we can assume every set of possible worlds to be a proposition. The next chapter will be more precise.)

$\left[B\right] = \{w \in W_{\mathcal{L}} : w \models \alpha \text{ for all } \alpha \in B\}$ is the proposition expressed by the set of sentences B. If $W_{\mathcal{L}}$ is the set of maximally consistent sets of sentences in \mathcal{L}, then for each proposition $B \subseteq W_{\mathcal{L}}$ there is a set of sentences in \mathcal{L}, a “theory,” $t(B)$, such that $B = \left[t(B)\right]$ ($t(B)$ is the intersection of B). This means that every proposition $B \subseteq W_{\mathcal{L}}$ can be expressed by a set of sentences in \mathcal{L}. If possible worlds are taken as primitive, this has to be assumed. I will make this assumption.

Let $B \subseteq W_{\mathcal{L}}$ be a proposition, and let $S \subseteq \wp(W_{\mathcal{L}})$ be a set of propositions. S is a system of spheres in $W_{\mathcal{L}}$ that is centered on B if, and only if, the following four conditions hold for all propositions $A, C \subseteq W_{\mathcal{L}}$ and all sentences α from \mathcal{L}.

\begin{itemize}
 \item [S1.] If $A \in S$ and $C \in S$, then $A \subseteq C$ or $C \subseteq A$. \hspace{0.5cm} S is nested
 \item [S2.] $B \in S$; and, if $A \in S$, then $B \subseteq A$. \hspace{0.5cm} S is centered on B
 \item [S3.] $W_{\mathcal{L}} \in S$.
\end{itemize}
S4. If $\llbracket \alpha \rrbracket \cap D \neq \emptyset$ for some $D \in S$, then there is $D' \in S$ such that: $\llbracket \alpha \rrbracket \cap D' \neq \emptyset$, and $D' \subseteq E$ for all $E \in S$ with $\llbracket \alpha \rrbracket \cap E \neq \emptyset$.

S1 says that systems of spheres are nested: any two spheres are such that one is contained in the other, or they are the same sphere. S2 says that the center of a system of spheres is itself a sphere in this system, and that every other sphere in the system contains the center as a sub-sphere. S3 says that the set of all possible worlds is a sphere in every system of spheres. Given S1, this implies that the set of all possible worlds contains every other sphere in any given system of spheres as a sub-sphere. Finally, in combination with S3, S4 says the following: for each logically consistent sentence α there is a smallest sphere $D' \in S$ that properly overlaps (has a non-empty intersection) with the proposition expressed by α, $\llbracket \alpha \rrbracket$.

We will assume that the center (and, given S2, any other sphere) of a system of spheres is not empty unless W_L is the only non-empty sphere.

For any sentence α from L, let $c_S(\alpha) = \llbracket \alpha \rrbracket \cap D'$ (= \emptyset if α is logically inconsistent). $c_S(\alpha)$ is the set of possible worlds in $\llbracket \alpha \rrbracket$ that are “closest” to the center B, where the meaning of ‘closeness’ is determined by the system of spheres S. If α is logically consistent with (a set of sentences expressing) the center B, then $c_S(\alpha)$ is just the intersection of the center with the proposition $\llbracket \alpha \rrbracket$, $\llbracket \alpha \rrbracket \cap B$. This corresponds to the easy case of an expansion of the belief set $t(B)$.

The difficult case of a revision of the belief set $t(B)$ arises when α is logically inconsistent with (every set of sentences expressing) the center B. In this case the agent has to leave the center and move to the nearest or closest sphere D' that properly overlaps with the proposition expressed by α and adopt their intersection, $\llbracket \alpha \rrbracket \cap D'$, as $c_S(\alpha)$ (unless, of course, α is itself logically inconsistent).

\[1\] In one respect Grove (1988)’s notion of a system of spheres is more general than Lewis (1973a)’s. Grove (1988) allows it to be centered on arbitrary propositions $B \subseteq W_L$, whereas Lewis (1973a: 14f) assumes the center to contain the actual world, and it alone. These last two assumptions are known as the principles of weak and strong centering, respectively.

In another respect Grove (1988)’s notion is less general than Lewis (1973a)’s. S4 is a version of the “limit assumption” for overall similarity, which Lewis (1973a: 19f) rejects. In the next chapter a doxastic version of the limit assumption will be shown to be a consequence of the consistency requirement for conditional beliefs. In chapter 7 a version of the limit assumption for descriptive normality will be shown to be a consequence of the consistency requirement for conditional beliefs and the royal rule, which relates descriptive normality and conditional beliefs.

Finally, while Lewis (1973a) does not assume S3, he assumes systems of spheres to be closed under arbitrary unions and non-empty, but otherwise arbitrary intersections. The first condition implies that the empty set is a sphere in every system of spheres (and that systems of spheres are also closed under empty intersections). Therefore, the center has to be defined differently. Other than that these two conditions only make a difference if there are infinitely many spheres.
3.2. SYSTEMS OF SPHERES

Figure 1 pictures this situation:

If the ideal agent’s doxastic state is represented by a system of spheres S that is centered on the proposition $\llbracket B \rrbracket$ which is expressed by her belief set B, we can define her revision operator \ast restricted to B as follows:

$$B \ast \alpha = t(c_S(\alpha))$$

The idea behind this equation is this. What the agent should believe after revising \ast her old belief set B by the new information α is a set of sentences, or theory, expressing the proposition $c_S(\alpha)$. The latter contains the possible worlds in $\llbracket \alpha \rrbracket$ that are closest, in the sense of S, when the center is the proposition expressed by her old belief set, $\llbracket B \rrbracket$.

Expansion is the special case in which the proposition expressed by the new information properly overlaps with the proposition expressed by her old belief set, $\llbracket \alpha \rrbracket \cap \llbracket B \rrbracket \neq \emptyset$. In this special case the agent does not have to leave the old center $\llbracket B \rrbracket$ of her doxastic state; it suffices if she narrows it down to the possible worlds also contained in $\llbracket \alpha \rrbracket$. However, in the general case of revision this intersection may be empty. In this general case she may have to leave the old center $\llbracket B \rrbracket$ of her doxastic state and move to the smallest sphere D' that properly overlaps with $\llbracket \alpha \rrbracket$ and adopt their intersection, $D' \cap \llbracket \alpha \rrbracket$, as the new center of her doxastic state.

As before we can picture the system of spheres centered on $\llbracket B \rrbracket$ as an “onion” around $\llbracket B \rrbracket$ (figure 2). The grey area $\llbracket B \ast \alpha \rrbracket = c_S(\alpha) = D' \cap \llbracket \alpha \rrbracket$ is the logically strongest proposition the agent should believe after revising her old belief set B by the new information α. It should be the new center of her doxastic state.
Grove (1988) proves the following representation theorem.

Theorem 2 (Grove 1988) Let \mathcal{L} be a formal language, and let $W_\mathcal{L}$ be a non-empty set of possible worlds that meets our assumption for \mathcal{L}.

For each set of sentences $B \subseteq \mathcal{L}$ and each system of spheres S in $W_\mathcal{L}$ that is centered on $\llbracket B \rrbracket$ and satisfies S_1-S$_4$ there is a revision operator \ast restricted to B such that for all sentences α from \mathcal{L}:

$$B \ast \alpha = t(c_S(\alpha)).$$

For each revision operator \ast from $\wp(\mathcal{L}) \times \mathcal{L}$ into $\wp(\mathcal{L})$ satisfying *1-8 and each set of sentences $B \subseteq \mathcal{L}$ there is a system of spheres S in $W_\mathcal{L}$ that is centered on $\llbracket B \rrbracket$ and satisfies S_1-S$_4$ such that for all sentences α from \mathcal{L}:

$$B \ast \alpha = t(c_S(\alpha)).$$

This theorem states that its equation translates the conditions on systems of spheres into the postulates for revision operators, and conversely. This means that revision operators can be represented by systems of spheres. It also means that the equation of the theorem renders the agent’s revising her beliefs by relying on a system of spheres satisfying conditions S1-S$_4$ a means to attain the end of her revision operator’s obeying of postulates *1-*8. The same holds for the converse of these two claims. In a sense, then, we can say that entrenchment orderings, revision operators (restricted to a fixed belief set), contraction operators (restricted to a fixed belief set), and reliance on a system of spheres all impose the same requirements on the revision of an ideal doxastic agent’s beliefs.
3.3 Iterated belief revision

In the AGM theory the ideal agent’s old doxastic state is represented by her belief set \(B \) together with her entrenchment ordering \(\preceq \) for \(B \). The latter ordering guides the revision process: it specifies which elements of the old belief set are given up, and which are kept, when new information \(\delta \) is received. The result of revising the old belief set \(B \) by the new information \(\delta \) is a new belief set \(B \ast \delta \).

Ida’s old belief set \(B \) includes the beliefs that it will rain on Tuesday, that it will be sunny on Wednesday, and that weather forecasts are always right. Suppose her belief \(\alpha \) that it will be sunny on Wednesday is less entrenched than her belief \(\beta \) that it will rain on Tuesday. Suppose further the latter in turn is less entrenched than her belief \(\gamma \) that weather forecasts are always right so that \(\bot \prec \alpha \prec \beta \prec \gamma \).

On Monday Ida receives the information that the weather forecast for Tuesday and Wednesday is rain, \(\delta \). We assume that she believes this new information; the AGM postulate of Success requires her to do so. Either way, now she has to give up her belief \(\alpha \) that it will be sunny on Wednesday or her belief \(\gamma \) that weather forecasts are always right. The reason is consistency: it follows from \(\delta \) that at least one of these two beliefs is false, \(\{ \delta \} \vdash \neg (\alpha \land \gamma) \), which implies \(\alpha \land \gamma \preceq \neg \delta \).

Since \(\alpha \) is less entrenched than \(\gamma \), \(\alpha < \gamma \), \(\alpha \) has to go. On the other hand, \(\gamma \) can and – given her end of holding many or informative beliefs: should – stay.

Furthermore, since \(\{ \gamma, \delta \} \not\vdash \neg \beta \), Ida need not and – for the same reason as above: should not – give up her belief \(\beta \) that it will rain on Tuesday. This is so even if she holds on to her belief \(\gamma \) that weather forecasts are always right, and adds the belief \(\delta \) that the weather forecast for Tuesday and Wednesday is rain. In addition, let us assume that \(\neg \delta \prec \beta \) so that Ida’s entrenchment ordering and new belief set \(B \ast \delta \) look as follows: where \(\mu \sim \nu \) is shorthand for \(\mu \preceq \nu \) and \(\nu \preceq \mu \),

\[
\bot \sim \neg \alpha < \alpha \sim \alpha \land \gamma \leq \neg \delta \prec \beta \prec \gamma \prec \alpha \lor \neg \alpha
\]

\[
B \ast \delta = \text{Cn} \left(\{ e \in \mathcal{L} : \neg e < e \} \cup \{ \delta \} \right) \supset \{ \beta, \gamma, \delta, \neg \alpha \}
\]

To Ida’s surprise, on Tuesday she receives the information that it does not rain after all. Therefore, she has to revise her newly acquired belief set \(B \ast \delta \) a second time by \(\neg \beta \) to correct her belief \(\beta \) that it rains on Tuesday. In addition, Ida has to give up her belief \(\delta \) that the weather forecast for Tuesday and Wednesday is rain (this might be because she has misheard the weather forecast) or her belief \(\gamma \) that weather forecasts are always right (this might be because she has been too gullible). Again, the reason is consistency: it follows from \(\neg \beta \) that at least one of these two beliefs is false, \(\{ \neg \beta \} \vdash \neg (\delta \land \gamma) \), which implies \(\delta \land \gamma \preceq \neg \neg \beta \).
Unfortunately, the AGM theory is of no help here. While Ida could use her entrenchment ordering to revise her old belief set \mathcal{B} to obtain a new belief set $\mathcal{B} \ast \delta$, the entrenchment ordering itself has not been revised. The AGM theory is silent as to whether δ is now more entrenched than, as entrenched as, or less entrenched than γ. However, the latter is exactly the kind of information that Ida needs to revise her beliefs a second time. More generally, the problem is that Ida’s doxastic state is represented as a belief set plus an entrenchment ordering before the revision process, but as a belief set without an entrenchment ordering after the revision process (or with an unspecified entrenchment ordering that is not determined by her previous one and the new information received). To handle iterated belief revisions, the ideal agent’s doxastic state has to be represented in the same way before and after the revision process. Gärdenvors & Rott (1995: 37) call this the “principle of categorical matching.”

Put differently, the problem is that $*1-*8$ only guide one-step revisions of the form $\mathcal{B} \ast \alpha$. To handle iterated belief revisions, additional postulates must be added that guide two-step revisions of the form $(\mathcal{B} \ast \alpha) \ast \beta$. Otherwise the entrenchment ordering for \mathcal{B} that represents $* \text{ restricted to } \mathcal{B}$ (see theorem 1) does not sufficiently constrain the entrenchment ordering for $\mathcal{B} \ast \alpha$ that represents $* \text{ restricted to } \mathcal{B} \ast \alpha$.

Nayak (1994), Boutilier (1996), Darwiche & Pearl (1997), Segerberg (1998), Fermé (2000), Rott (2003; 2006), and others do exactly this. They augment the AGM postulates by additional ones that indirectly guide how the agent should revise her entrenchment ordering in addition to her belief set when she receives new information. On their accounts the ideal agent’s doxastic state is represented as a belief set plus an entrenchment ordering before and after the revision process. Importantly, both of these elements are revised when new information is received.

Let us consider the postulates from Darwiche & Pearl (1997). Like $*1-*8$, they center around the idea of adding and removing as few beliefs as possible, subject to the constraints that belief sets are consistent and that new information is added successfully. The reason still is that adding new beliefs contains the risk of failing to shun error; and removing beliefs contains the risk of failing to believe the truth.

$*9$ says that revising her old belief set by new information should result in the same new belief set as first revising her old belief set by a logical consequence of the new information, and subsequently revising the resulting belief set by the new information in its entirety. That is, revision by a more specific piece of information – say, that her friend Bay had caffeine-free coffee (so is not full of caffeine) – should override all changes that result from first revising Ida’s old belief set by a less specific piece of information – say, that Bay had coffee (which suggests that she is full of caffeine given Ida’s belief that coffee normally contains caffeine).
3.3. **ITERATED BELIEF REVISION**

*10 is similar in spirit. It says that revising her old belief set consecutively by two pieces of information that are logically inconsistent should result in the same new belief set as revising her old belief set by the second piece of information alone. That is, revision by the second piece of information – say, that Ida had red wine from Burgundy – should override all changes that result from first revising her old belief set by the first piece of information that is logically incompatible with the second piece of information – say, that Ida had no wine.

Suppose the agent holds a belief after revising her old belief set by a piece of information. This may, but need not be a new belief, i.e. one not held previously. *11 says that she should also hold this belief if she first revises her old belief set by this very belief, and subsequently revises the resulting belief set by said piece of information. Finally, suppose there is a sentence that is logically compatible with the result of revising the agent’s old belief set by a piece of information. *12 says that this sentence should also be logically compatible with what she ends up believing if she first revises her old belief set by this very sentence, and subsequently revises the resulting belief set by said piece of information.

More precisely, a revision operator * has to satisfy the following postulates for all sets of sentences B of the agent’s language L and all sentences α and β from L.

*9. If $\beta \in Cn(\{\alpha\})$, i.e. if $\{\alpha\} \vdash \beta$, then $(B * \beta) * \alpha = B * \alpha$.

*10. If $-\beta \in Cn(\{\alpha\})$, i.e. if $\{\alpha\} \vdash -\beta$, then $(B * \beta) * \alpha = B * \alpha$.

*11. If $\beta \in B * \alpha$, i.e. (given *1) if $B * \alpha \vdash \beta$, then $\beta \in (B * \beta) * \alpha$.

*12. If $-\beta \notin B * \alpha$, i.e. (given *1) if $B * \alpha \nvdash -\beta$, then $-\beta \notin (B * \beta) * \alpha$.

To better understand what these four new postulates require, it will be helpful to consider the following reformulation of a system of spheres S in W_L centered on B. Let $B \subseteq W_L$ be a proposition, and let \leq be a binary relation on W_L. \leq is an *implausibility ordering on W_L with center B* if, and only if, the following holds for all possible worlds w, w', and w'' from W_L and all propositions $A \subseteq W_L$.

\begin{align*}
\leq 1. \quad & w \leq w' \text{ or } w' \leq w. & \leq \text{ is connected} \\
\leq 2. \quad & \text{If } w \leq w' \text{ and } w' \leq w'', \text{ then } w \leq w''. & \leq \text{ is transitive} \\
\leq 3. \quad & w \in B \text{ if, and only if, for all } w^* \in W_L: w \leq w^*. \\
\leq 4. \quad & \text{If } A \neq \emptyset, \text{ then } \{v \in A : v \leq w^* \text{ for all } w^* \in A\} \neq \emptyset.
\end{align*}
An implausibility ordering on W_L with center B orders the possible worlds in W_L according to their implausibility. This time it follows that the center B is not empty if, as we assume, the set of all possible worlds W_L is not empty.

≤ 1 requires that any two possible worlds can be compared with respect to their implausibility: either the first possible world is at least as implausible as the second, or the second possible world is at least as implausible as the first, or both.

≤ 2 requires that the ordering is transitive: if one possible world is at least as implausible as a second, and the second possible world is at least as implausible as a third, then the first possible world is at least as implausible as the third.

≤ 3 requires that the possible worlds in the center are no more implausible than all other possible worlds. That is, the center is the proposition that contains all and only the least implausible possible worlds. Finally, ≤ 4 requires that each proposition that contains a possible world also contains a possible world that is no more implausible than any possible world in this proposition. That is, each non-empty or logically consistent proposition contains a least implausible possible world. The latter feature allows us to identify the implausibility of a proposition with the implausibility of the least implausible possible world(s) comprised by this proposition. We will make this identification explicit in the next chapter.

A system of spheres in W_L that is centered on B can be understood as an implausibility ordering on W_L whose center B comprises the least implausible possible worlds. The problem with the AGM approach can now be described as follows. Before the revision process the ideal agent’s doxastic state is represented as a belief set B plus an implausibility ordering \leq_B with center $\llbracket B \rrbracket$. Yet after a revision by the new information α the ideal agent’s doxastic state is represented as a belief set $B* \alpha$ without an implausibility ordering $\leq_{B* \alpha}$ (or with an unspecified implausibility ordering that is not determined by \leq_B and α). Darwiche & Pearl (1997)’s postulates $^9*-^{12}$ address this problem by indirectly guiding the revision of the implausibility ordering. For a fixed belief set B, and with $w < w'$ shorthand for $w \leq w'$, but not $w' \leq w$, postulates $^9*-^{12}$ restricted to B become the following requirements for all possible worlds w and w' from W_L and all sentences α from the agent’s language L.

≤ 5. If $w, w' \in \llbracket \alpha \rrbracket$, then $w \leq_B w'$ if, and only if, $w \leq_{B* \alpha} w'$.

≤ 6. If $w, w' \notin \llbracket \alpha \rrbracket$, then $w \leq_B w'$ if, and only if, $w \leq_{B* \alpha} w'$.

≤ 7. If $w \in \llbracket \alpha \rrbracket$ and $w' \notin \llbracket \alpha \rrbracket$ and $w <_B w'$, then $w <_{B* \alpha} w'$.

≤ 8. If $w \in \llbracket \alpha \rrbracket$ and $w' \notin \llbracket \alpha \rrbracket$ and $w \leq_B w'$, then $w \leq_{B* \alpha} w'$.
3.3. Iterated Belief Revision

≤ 1 says that the implausibility ordering among the possible worlds within the proposition expressed by the new information should be the same before and after a revision by the new information. ≤ 2 says that the implausibility ordering among the possible worlds outside of the proposition expressed by the new information should also be the same before and after a revision by the new information. As to ≤ 3, suppose a possible world within the proposition expressed by the new information is less implausible than a possible world outside of this proposition before a revision by the new information. According to ≤ 3 this should remain so after a revision by the new information. ≤ 4 says something similar. Suppose a possible world within the proposition expressed by the new information is at most as implausible as a possible world outside of this proposition before a revision by the new information. According to ≤ 4 this should also remain so after a revision by the new information.

Before we turn to a representation theorem for iterated belief revisions let us consider a third representation theorem for belief revision. As mentioned, in a sense, entrenchment orderings, revision operators, contraction operators, and reliance on a system of spheres all impose the same requirements on the revision of an ideal doxastic agent’s beliefs. According to the following theorem due to Grove (1988) these are also the requirements imposed by implausibility orderings.

Theorem 3 (Grove 1988) Let \(\mathcal{L} \) be a formal language, and let \(W_\mathcal{L} \) be a non-empty set of possible worlds that meets our assumption for \(\mathcal{L} \).

For each set of sentences \(B \subseteq \mathcal{L} \) and each implausibility ordering \(\leq \) on \(W_\mathcal{L} \) with center \(\llbracket B \rrbracket \) that satisfies \(\leq 1 \leq 4 \) there is a revision operator \(* \) restricted to \(B \) such that for all sentences \(\alpha \) from \(\mathcal{L} \):

\[
B * \alpha = t \left(\{ \omega \in \llbracket \alpha \rrbracket : \omega \leq \omega' \text{ for all } \omega' \in \llbracket \alpha \rrbracket \} \right).
\]

For each revision operator \(* \) from \(\wp (\mathcal{L}) \times \mathcal{L} \) into \(\wp (\mathcal{L}) \) that satisfies *1-*8 and each set of sentences \(B \subseteq \mathcal{L} \) there is an implausibility ordering \(\leq_B \) on \(W_\mathcal{L} \) with center \(\llbracket B \rrbracket \) satisfying \(\leq 1 \leq 4 \) such that for all sentences \(\alpha \) from \(\mathcal{L} \):

\[
B * \alpha = t \left(\{ \omega \in \llbracket \alpha \rrbracket : \omega \leq_B \omega' \text{ for all } \omega' \in \llbracket \alpha \rrbracket \} \right).
\]

(If two sets of sentences \(B \) and \(B' \) are logically equivalent, they induce the same center \(\llbracket B \rrbracket = \llbracket B' \rrbracket \). In this case one can assume that \(\leq_B = \leq_{B'} \).)

\(\{ \omega \in \llbracket \alpha \rrbracket : \omega \leq \omega' \text{ for all } \omega' \in \llbracket \alpha \rrbracket \} \) is the set of least implausible possible worlds in which the new information \(\alpha \) is true. It is the proposition expressed by the belief set \(B * \alpha \) that results from revising \(* \) the ideal doxastic agent’s old belief set \(B \) by new information \(\alpha \).
Against this background we can now state the following theorem for iterated belief revisions. It follows from a more general result by Darwiche & Pearl (1997) who extend previous work by Katsuno & Mendelzon (1991) on non-iterated belief revision. The theorem backs the claim that postulates ∗9-∗12 for revision operators become requirements ≤5≤ 8 for implausibility orderings.

Theorem 4 (Darwiche & Pearl 1997) Let \(\mathcal{L} \) be a formal language, and let \(\mathcal{W}_\mathcal{L} \) be a non-empty set of possible worlds that meets our assumption for \(\mathcal{L} \).

Suppose ∗ is a revision operator from \(\wp(\mathcal{L}) \times \mathcal{L} \) into \(\wp(\mathcal{L}) \) that satisfies ∗1-∗8. According to theorem 3, there exists a family of implausibility orderings \((\leq_B)_{B \subseteq \mathcal{L}} \) on \(\mathcal{W}_\mathcal{L} \) such that for each set of sentences \(B \subseteq \mathcal{L} \): \(\leq_B \) satisfies \(1 \leq 4 \) and is such that, for all sentences \(\alpha \) from \(\mathcal{L} \), \(B^* \alpha = t(\{ \omega \in \llbracket \alpha \rrbracket : \omega \leq_B \omega' \text{ for all } \omega' \in \llbracket \alpha \rrbracket \}) \).

For this ∗ and any one of these families \((\leq_B)_{B \subseteq \mathcal{L}} \): ∗ satisfies ∗9-∗12 if, and only if, for every set of sentences \(B \subseteq \mathcal{L} \), \(\leq_B \) satisfies \(5 \leq 8 \).

The approaches to iterated belief revision mentioned above have in common that they satisfy Gärdenfors and Rott (1995)’s principal of categorial matching: they represent the ideal agent’s doxastic state as a belief set plus an entrenchment ordering / system of spheres / implausibility ordering both before and after the revision process. Furthermore, these approaches have in common that the new information is represented as just a sentence or propositional content. The latter is also true for the approach by Jin & Thielscher (2007) discussed below, but not for what Rott (2009) calls “two-dimensional” belief revision operators (see also Cantwell 1997, Ferné & Rott 2004, and Rott 2007).

In “one-dimensional” belief revision the new information takes the form of an input sentence \(\alpha \). It is then the job of the belief revision method, as opposed to the new information itself, to specify where in the new entrenchment ordering this sentence should be placed. Nayak (1994)’s lexicographic revision and Boutilier (1996)’s natural revision and Segerberg (1998)’s irrevocable revision and Rott (2006)’s irrefutable revision are examples of revision methods specifying this.

In two-dimensional belief revision it is the new information itself that carries at least part of this information. Here the new information does not merely say that the input sentence \(\alpha \) is true, so should be believed according to the Success postulate. Instead, the new information now specifies, at least to some extent, how firmly \(\alpha \) is believed by specifying that, in the new entrenchment ordering \(\leq^+ \), \(\alpha \) is at least as entrenched as some “reference sentence” \(\beta \). Thus, the new information is now of the form: \(\beta \leq^+ \alpha \). In addition, the new information now says, not that \(\alpha \) is true, but how firmly \(\alpha \) is believed. So, the new information is now about the ideal agent’s new doxastic state – her internal, not the external reality.
3.3. **ITERATED BELIEF REVISION**

Importantly, the shift from one- to two-dimensional belief revision replaces the requirement that the ideal doxastic agent believe the propositional content of the new information by the assumption that she does: our assumption from section 2.3 is substituted for the Success postulate. In addition, this shift begins to incorporate the insight that belief in the propositional content of the new information – like belief in the sentences in her belief set – is a matter of degree. Like her doxastic state, the new information is now represented comparatively. Eventually both will have to be represented quantitatively.

Let us return to our example. On Monday Ida receives the information that the weather forecast for Tuesday and Wednesday is rain, \(\delta \). In one-dimensional belief revision she picks one of the iterated belief revision methods mentioned above. Then she revises her old belief set \(\mathcal{B} \) and entrenchment ordering \(\preceq_\mathcal{B} \) for \(\mathcal{B} \) to obtain a new belief set \(\mathcal{B}^* \) and entrenchment ordering \(\preceq_{\mathcal{B}^*} \) for \(\mathcal{B}^* \). Different methods return different outputs, but on all of them Ida ends up believing that it will rain on Tuesday, \(\beta \). On Tuesday Ida receives the information that it does not rain after all, \(\neg \beta \). In one-dimensional belief revision Ida proceeds as before.

In two-dimensional belief revision Ida does not merely receive the qualitative information \(\neg \beta \) about Tuesday’s weather. Instead, she receives the comparative information \(\gamma \preceq^+ \neg \beta \) about her new doxastic state. This piece of new information says that, in her new entrenchment ordering \(\preceq^+ \), the claim that it does not rain on Tuesday is at least as entrenched as the claim that weather forecasts are always right, indicating that she trusts her sight at least as much as the weatherperson (we could, of course, take a reference sentence other than \(\gamma \)).

Now, there are still several belief revision methods to choose from (see Rott 2009). Among others, this reflects the fact that Ida can respect the constraint \(\gamma \preceq^+ \neg \beta \) by lowering the doxastic status of \(\gamma \), or by raising the doxastic status of \(\neg \beta \). However, the new information now is more specific and leaves less room to be filled by the revision method. It is then only a small step to equip Ida with the complete information exactly where \(\neg \beta \) is located in her new entrenchment ordering.

As mentioned, in two-dimensional belief revision the new information is of comparative form. Therefore, to specify exactly where \(\neg \beta \) is located in the agent’s new entrenchment ordering, the new information must specify the relative position (in the new entrenchment ordering) of \(\neg \beta \) with respect to every sentence of her language. That is, the new information must specify for every sentence \(\epsilon \) from \(\mathcal{L} \) whether \(\neg \beta \prec^+ \epsilon \) or \(\neg \beta^+ \sim \epsilon \) or \(\epsilon \prec^+ \neg \beta \) in the new entrenchment ordering \(\preceq^+ \). In many cases this will require the new information to determine the entire new entrenchment ordering, thus rendering any belief revision method superfluous.
A different way to let the new information specify exactly where \(\neg \beta \) is located in the new entrenchment ordering is to take into account Hume’s “proportions.” Doing so allows us to take the small, but crucial step to equip the ideal doxastic agent with the quantitative information that \(\neg \beta \) is entrenched to a specific degree. In this case the new information determines exactly where \(\neg \beta \) is located in the new “entrenchment ordering” on its own, without the help of a revision method – and without requiring the new information to determine the entire new doxastic state. (Strictly speaking we are not dealing with an entrenchment ordering anymore, as the ideal agent’s old and new doxastic state are now represented quantitatively.)

The step of equipping Ida with the quantitative information that she believes \(\neg \beta \) to a specific degree is taken by Spohn’s (1988) theory of ranking functions. It is the same step the Bayesians take with Jeffrey and Field conditionalisation (Jeffrey 1983a, Field 1978). This step allows the new information to completely specify the ideal agent’s new doxastic attitude towards a sentence or propositional content. The revision method then merely has to incorporate this new information into the ideal agent’s old doxastic state in a consistent way. As indicated in section 2.3, it will do so by requiring her to hold on to those conditional beliefs whose conditions are the logically strongest propositions which are directly affected by the new information. Of course, once the new information is represented in a quantitative way, the ideal agent’s doxastic state needs to be so represented as well. Ranking functions are such “quantitative entrenchment orderings.”

Before presenting ranking theory let us return to the qualitative approaches of one-dimensional belief revision. Postulates *1-*12 are still compatible with many conflicting belief revision methods. This means the agent’s old doxastic state – her implausibility ordering \(\preceq_B \) with center \(\mathbb{B} \) that represents her revision operator \(* \) restricted to her old belief set \(B \) (see theorems 3 and 4) – together with the new information \(\alpha \) still does not determine her new doxastic state – her implausibility ordering \(\preceq_{B^*\alpha} \) with center \(\mathbb{B}^*\alpha \) that represents her revision operator \(* \) restricted to her new belief set \(B^*\alpha \). That is, Darwiche & Pearl (1997)’s additional postulates go in the right direction, but they do not go far enough.

Jin & Thielscher (2007) attempt to remedy this situation by employing the notion of doxastic independence. In addition to *1-*12, they require the agent to consider new information \(\beta \) to be independent of a sentence \(\alpha \) after revision by \(\beta \) if she considers \(\beta \) to be independent of \(\alpha \) before revision by \(\beta \). In other words, revisions should preserve doxastic independences. While the idea behind Jin & Thielscher (2007)’s proposal is correct, as we will see, their actual requirement is too strong. The reason is that their notion of doxastic dependence is too strong: too many beliefs are rendered independent of too many other beliefs.
According to Jin & Thielacher (2007), a believed sentence α is independent of another sentence β if the believed sentence α is still believed after revision by the negation of the other sentence, $\neg\beta$. However, Ida can receive new information $\neg\beta$ whose negation β she considers to be positively relevant to, so not independent of, a belief α of hers without making her give up this belief. For instance, Ida can receive the information $\neg\beta$ that the best player of her team will not be fit for the match without giving up her belief α that her team will win the match – all while considering the information β that the best player of her team will be fit for the match to be positively relevant to, so not independent of, her belief α that her team will win the match.

More generally, the ways in which beliefs can depend on each other are many and varied. The qualitative and comparative notions of the AGM theory of belief revision, as well as its refinements, are too coarse-grained to capture these doxastic dependencies. Ida can receive new information which lowers or raises the doxastic status of one of her beliefs without affecting her merely comparative entrenchment ordering. To illustrate, suppose there is a contingent belief she holds more firmly than any other contingent belief. All her sources of information have testified that this belief is true. Ida then receives the information that one of these sources cannot be trusted after all. Consequently she lowers the doxastic status of this belief. However, she lowers the doxastic status of this belief without bringing it down to the level of any of her other contingent beliefs: said belief is still the most firmly held of her contingent beliefs. The qualitative and comparative notions of belief revision theory are unable to capture this. In order to adequately represent all doxastic dependencies, and to handle iterated belief revisions, we have to go all the way from qualitative belief sets and comparative entrenchment orderings / systems of spheres / implausibility orderings to quantitative ranking functions. Only Hume’s “proportions” get the job done.
Chapter 4

Conditional Belief

In this chapter I will first present the static and dynamic rules of ranking theory which is first developed in Spohn (1988) and discussed at book-length in Spohn (2012). Then I will show how ranking theory solves the problem of iterated belief revisions. This chapter relies on Huber (2013c; 2019).

4.1 Ranking theory: static rules

Ranking functions are introduced by Spohn (1988; 1990) to represent qualitative belief. Spohn (2012) is a comprehensive treatise. Ranking theory is quantitative or numerical in the sense that ranking functions assign numbers, so-called ranks, to sentences or propositions. Thus, we now take into account Hume’s “proportions.” These numbers are used in the definition of conditional ranking functions which represent conditional belief. As we will see, once conditional ranking functions are defined, we can interpret the axioms of ranking theory in qualitative, albeit conditional terms. The numbers assigned by conditional ranking functions are called conditional ranks. They are defined as differences of non-conditional ranks. In contrast to this, conditional probabilities are defined as ratios of non-conditional probabilities.

Instead of taking the objects of belief to be sentences of a formal language it is both more general and more convenient to take them to be propositions of an algebra over a non-empty set of possible worlds. As we will see in section 6.1, this does not commit us to the assumption that the ideal doxastic agent is “logically omniscient” in the sense that she is certain of all sentences that are logically true, and has the same doxastic attitude towards sentences that are logically equivalent.
The notion of an algebra presupposes the “minimal conceptual structure” of propositional contents alluded to in chapter 1. It does so by presupposing that we can meaningfully speak of the negation or complement of a set of possible worlds with respect to another set of possible worlds; the conjunction or intersection of two or more sets of possible worlds; as well as the disjunction or union of two or more sets of possible worlds. We will assume that the ideal doxastic agent understands the set of all possible worlds, the complement (with respect to the set of all possible worlds) of any set of possible worlds she understands, as well as the intersections and unions of any sets of possible worlds she understands.

The algebra of propositions represents the ideal doxastic agent’s language, although we use this term in a slightly non-standard way: the agent’s language is a “language of thought” that consists of those sets of possible worlds that she understands and has an opinion on in the weak sense of section 2.2 that includes suspension of judgment. It is defined as follows. A set of subsets of a non-empty set W, \mathcal{A}, is an algebra over W if, and only if,

(i) the set of all possible worlds W is a proposition in $\mathcal{A},$

(ii) if A is a proposition in \mathcal{A}, then the complement or negation of A, $W \setminus A = \overline{A}$, is also a proposition in \mathcal{A}, and

(iii) if both A and B are propositions in \mathcal{A}, then the union or disjunction of A and B, $A \cup B$, is also a proposition in \mathcal{A}.

We say that an algebra \mathcal{A} over W is a σ-algebra if, and only if, the following holds for every countable set \mathcal{B} of subsets of W: if all elements of \mathcal{B} are propositions in \mathcal{A}, i.e. if $\mathcal{B} \subseteq \mathcal{A}$, then the union or disjunction of the elements of \mathcal{B}, $\bigcup \mathcal{B}$, is also a proposition in \mathcal{A}. Finally, we say that an algebra \mathcal{A} over W is complete if, and only if, the following holds for every (countable or uncountable) set \mathcal{B} of subsets of W: if all elements of \mathcal{B} are propositions in \mathcal{A}, i.e. if $\mathcal{B} \subseteq \mathcal{A}$, then the union or disjunction of the elements of \mathcal{B}, $\bigcup \mathcal{B}$, is also a proposition in \mathcal{A}. The power-set of a non-empty set of possible worlds W, $\mathcal{P}(W)$, is a complete algebra over W.

The algebra is the set of sets of possible worlds the agent understands and has an opinion on. As a consequence, the three clauses in its definition become three normative requirements. First, the agent is required to have an opinion on the set of all possible worlds. Second, if she has an opinion on a set of possible worlds, then she is required to also have an opinion on its negation. Third, if she has an opinion on two or more sets of possible worlds, then she is required to also have an opinion on their disjunction (and, hence, conjunction). The three clauses are not requirements of understanding because of our assumption from above.
There is one more notion that we need. A set of subsets of W, \mathcal{P}, is a partition of W if, and only if,

(i) all elements of \mathcal{P} are non-empty,

(ii) any two distinct elements A and B of \mathcal{P} are mutually exclusive, i.e. $A \cap B = \emptyset$ if $A \neq B$, and

(iii) the elements of \mathcal{P} cover W in the sense that $W \subseteq \bigcup \mathcal{P}$.

The elements of a partition are called “cells.” Every partition of a non-empty set of possible worlds W generates a unique complete algebra over W. Its elements are all unions of one or more cells, plus the empty set.

Suppose we have a formal language \mathcal{L}, and $W_{\mathcal{L}}$ is the set of all models or truth value assignments for \mathcal{L}. Then $\mathcal{A} = \{ \llbracket \alpha \rrbracket \subseteq W_{\mathcal{L}} : \alpha \in \mathcal{L} \}$ is an algebra of propositions over $W_{\mathcal{L}}$ (if the truth values are assigned in the standard way), or it generates such an algebra (this is so even for the non-standard truth value assignment from section 6.1). This algebra in turn generates a unique smallest σ-algebra, and a unique smallest complete algebra. This means that for every formal language of sentences there is an algebra of propositions over the set of models of the formal language. Since the converse is not true, the semantic framework of propositions is more general than the syntactic framework of sentences.

As should become clear, it is also more convenient. Consider a non-empty set of possible worlds W and an algebra of propositions \mathcal{A} over W. A function ϱ from \mathcal{A} into the set of natural numbers \mathbb{N} extended by infinity ∞, $\mathbb{N} \cup \{\infty\}$, is a ranking function on \mathcal{A} if, and only if, for all propositions A and B from \mathcal{A}:

\begin{align*}
\varrho(W) &= 0 \tag{4.1} \\
\varrho(\emptyset) &= \infty \tag{4.2} \\
\varrho(A \cup B) &= \min\{\varrho(A), \varrho(B)\} \tag{4.3}
\end{align*}

As in probability theory, if \mathcal{A} is a σ-algebra, the third axiom can be strengthened to countable unions. The resulting ranking function is called “countably minimitive.” In contrast to probability theory, if \mathcal{A} is a complete algebra, the third axiom can even be strengthened to arbitrary, i.e. possibly uncountable, unions. The resulting ranking function is called “completely minimitive.”

For a non-empty or consistent proposition $C \neq \emptyset$ from \mathcal{A} the conditional ranking function $\varrho(\cdot | C) : \mathcal{A} \rightarrow \mathbb{N} \cup \{\infty\}$ based on the (non-conditional) ranking function $\varrho(\cdot) : \mathcal{A} \rightarrow \mathbb{N} \cup \{\infty\}$ is defined by the difference formula:

\[\text{if } \varrho(C) < \infty, \text{ then } \varrho(\cdot | C) = \varrho(\cdot \cap C) - \varrho(C). \]
CHAPTER 4. CONDITIONAL BELIEF

For the case of $\varrho(C) = \infty$, Goldszmidt & Pearl (1996: 63) suggest infinity – while Huber (2007a: 517) suggests zero – as value of $\varrho(A \mid C)$, for all propositions A from \mathcal{A}. Still considering the case of $\varrho(C) = \infty$, Huber (2006: 464) suggests zero as value of $\varrho(A \mid C)$ for all non-empty propositions A from \mathcal{A}, and then stipulates $\varrho(\emptyset \mid C) = \infty$ to ensure that conditional ranking functions are ranking functions. Yet another option for this case is to define $\varrho(A \mid C)$ as zero if $C \subseteq A$, and as infinity otherwise. Raidl (2019) contains a careful discussion of these options and corrects mistakes by Huber (2014a; 2015a; 2017a).

Spohn (2012: 79) briefly considers a rank-theoretic version of Popper-Rényi functions (Popper 1955, Rényi 1955) that takes conditional ranks as primitive and axiomatizes them rather than non-conditional ranks, as we have done. However, ultimately he restricts the conditions to those with a finite rank, as we will do. This means conditional ranks are undefined when the condition has infinite rank – much like (classical) conditional probabilities are undefined when the condition has probability zero.

As the following makes clear, this restriction is not very restrictive. A ranking function ϱ is \textit{regular} if, and only if, for all consistent propositions A from \mathcal{A}:

$$
\varrho(A) < \varrho(\emptyset) = \infty.
$$

(4.4)

In contrast to probability theory (Hájek ms), it is always possible to define regular ranking functions, no matter how rich or fine-grained the underlying algebra of propositions. Thus, conditional ranks can be defined for all consistent conditions.

Doxastically, ranks are interpreted as grades of disbelief. An agent disbelieves a proposition A if, and only if, she assigns a positive rank to A, $\varrho(A) > 0$. The agent assigns rank zero to propositions she does not disbelieve. However, this does not mean she believes these propositions. Instead, belief in some proposition is characterized as disbelief in its negation: an agent believes a proposition A if, and only if, she disbelieves its negation $\neg A$, $\varrho(\neg A) > 0$. An ideal doxastic agent suspends judgment with respect to a proposition (and its negation) if, and only if, both the proposition and its negation are assigned rank zero.

\textit{Conditional} ranks are interpreted as grades of \textit{conditional} disbelief. An agent disbelieves a proposition A conditional on a proposition C with finite rank if, and only if, she assigns a positive rank to A conditional on C, $\varrho(A \mid C) > 0$. She believes A conditional on C if, and only if, she disbelieves $\neg A$ conditional on C, $\varrho(\neg A \mid C) > 0$. She suspends judgment with respect to A (and its negation) conditional on C if, and only if, she assigns conditional rank zero to both A and $\neg A$.

Finally, an agent is (conditionally) certain of a proposition if, and only if, she assigns infinite (conditional) rank to its negation. She (conditionally) deems a proposition possible if, and only if, she assigns a finite (conditional) rank to it.

An agent believes a proposition if, and only if, she believes it conditional on the tautological proposition W: $\varrho(\cdot) = \varrho(\cdot \mid W)$. Thus, rank-theoretic conditional belief generalizes rank-theoretic belief. It does so in the same way as probabilistic conditional degree of belief generalizes probabilistic degree of belief. In contrast to probability theory, where the probability of A is determined by the probability of \overline{A}, the rank of \overline{A} is not, in general, determined by the rank of A.

We can reformulate the doxastic interpretation of the axioms of ranking theory in qualitative terms by assuming the definition of a conditional ranking function – that is, by assuming that conditional ranks are numbers from $\mathbb{N} \cup \{\infty\}$ that are defined as differences of non-conditional ranks as above. This implies almost half of the third axiom even in its strongest form: $\varrho(\bigcup B) \leq \min \{\varrho(A) : A \in B\}$ if $\varrho(\bigcup B) < \infty$. This inequality requires the agent to (conditionally) disbelieve all disjuncts of a disjunction she (conditionally) disbelieves provided she deems the condition possible. For $\varrho(\bigcup B) = \infty$ we get this inequality by requiring the agent to be certain of all its conjuncts \overline{A} if she is certain of a conjunction $\bigcap \{A : A \in B\}$. The latter implies that, conditional on any condition she deems possible, the agent should be conditionally certain of all its conjuncts if she is conditionally certain of a conjunction. Thus, unlike conditional belief, conditional certainty is not more demanding than its non-conditional counterpart.

Part, but not all, of what the other half or inequality of the third axiom says is that the agent should disbelieve a disjunction $A \cup B$ if she disbelieves both its disjuncts A and B. Given the definition of a conditional ranking function, the third axiom extends this requirement to conditional beliefs. For any proposition C she deems possible, the agent should disbelieve a disjunction $A \cup B$ conditional on C if she disbelieves A conditional on C and she disbelieves B conditional on C. In addition, the third axiom requires the agent to be certain of a conjunction $\overline{A} \cap \overline{B}$ if she is certain of both its conjuncts \overline{A} and \overline{B}. (As above, this implies that she should be certain of a conjunction $\overline{A} \cap \overline{B}$ conditional on C if she is certain of \overline{A} conditional on C and she is certain of \overline{B} conditional on C.) The strengthenings of the second half or inequality of the third axiom extend these requirements to countable and arbitrary disjunctions and conjunctions, respectively. For any proposition C that she deems possible, the agent should disbelieve a disjunction $\bigcup B$ conditional on C if she disbelieves, conditional on C, each disjunct A from B; and she should be certain of a conjunction $\bigcap \{A : A \in B\}$ if she is certain of all its conjuncts \overline{A}.
The first axiom says that the ideal doxastic agent should not disbelieve the tautological proposition. The second axiom says that she should not deem the contradictory proposition possible. The fourth axiom, regularity, requires her to deem any consistent proposition possible so that she has conditional (dis)beliefs for all consistent conditions. Thus, given the definition of a conditional ranking function, we can formulate the axioms of ranking theory in qualitative terms.

According to the first axiom, the agent should not disbelieve \(A \cup \overline{A} \). The third axiom then yields that she should not simultaneously believe and disbelieve \(A \), for any proposition \(A \). This is part one of our non-conditional consistency requirement from section 2.3. According to the definition of a conditional ranking function, the agent should not disbelieve \(A \cup \overline{A} \) conditional on any condition she deems possible. The third axiom then yields that, for any proposition \(A \), she should not simultaneously believe and disbelieve \(A \) on any condition she deems possible. This is part one of our conditional consistency requirement from section 2.3 for conditions the agent deems possible. Part two of both requirements follows from the fact that a ranking function is a function.

In fact, given the definition of a conditional ranking function, part one of the conditional consistency requirement from section 2.3 is just about all that is required by the axioms of ranking theory. As noted above, the definition of a conditional ranking function implies that \(\varrho(\bigcup \mathcal{B}) \leq \min \{ \varrho(A) : A \in \mathcal{B} \} \) if \(\varrho(\bigcup \mathcal{B}) < \infty \). Part one of the conditional consistency requirement from section 2.3 implies that \(\min \{ \varrho(A \mid \bigcup \mathcal{B}) : A \in \mathcal{A} \} = 0 \) if \(\varrho(\bigcup \mathcal{B}) < \infty \). The definition of a conditional ranking function turns this into \(\min \{ \varrho(A) : A \in \mathcal{A} \} \leq \varrho(\bigcup \mathcal{B}) \) if \(\varrho(\bigcup \mathcal{B}) < \infty \). This gives us the third axiom under the condition that \(\varrho(\bigcup \mathcal{B}) < \infty \). The additional requirement that the agent should be certain of a conjunction \(\bigcap \{ \overline{A} : A \in \mathcal{B} \} \) if, and only if, she is certain of all its conjuncts \(\overline{A} \), gives us the third axiom under the condition that \(\varrho(\bigcup \mathcal{B}) = \infty \). The remaining axioms follow from the additional requirements that the agent should not disbelieve the tautological proposition, and that she should be certain of it (and it alone).

The choice of the natural numbers cannot be obtained in this way. Instead, we have to point to the third axiom which, in its strongest version, requires the co-domain of a ranking function to be well-ordered. Since we also need at least infinitely many different numbers, the choice of the natural numbers plus infinity is the simplest means to attain this end. However, there may be other ends that require different choices (Kroedel & Huber 2013: fn. 12 mention one). Therefore, it is worth mentioning that Spohn (1988) develops ranking theory with the class of ordinals, and Spohn (2012: 72) with the set of real numbers plus infinity.
4.1. RANKING THEORY: STATIC RULES

Finally, suppose an assignment of ranks is not a functional relation between propositions and numbers. Then some proposition is not related to any number, or to more than one. In the latter case the agent simultaneously believes and refrains from believing this proposition conditional on itself (if at least two of the numbers are finite), or she simultaneously is certain of and refrains from being certain of its negation (if one of the numbers is infinite). The former case cannot arise because the algebra is the set of propositions the agent (understands and) has an opinion on. Thus, given the definition of a conditional ranking function, the conditional consistency requirement from section 2.3 is just about all that the axioms of ranking theory require.

Ranks are numbers. However, unlike probabilities, which are measured on an absolute scale, ranks do not utilize all the information carried by these numbers. Instead, ranks are at best measured on a ratio scale (Hild & Spohn 2008) – at best, for even the choice of zero as threshold for disbelief is somewhat arbitrary, as Spohn (2015: 9) notes (but see Raidl 2018, Raidl & Rott ms for subtle differences for conditional belief). This is perhaps clearest if we consider what Spohn (2012: 76) calls ϱ’s two-sided ranking function τ. This is a function from A into the set of integers Z extended by infinity and minus infinity −∞, Z ∪ {∞} ∪ {−∞}, that is defined in terms of ϱ as follows: for all proposition A from A,

τ (A) = ϱ (A) − ϱ (A).

Ranking functions and two-sided ranking functions are interdefinable:

ϱ (·) = − min {τ (·), 0}.

Two-sided ranking functions are more difficult to axiomatize (Raidl & Spohn 2020, Raidl ms). However, they may be more intuitive, as they characterize belief in positive terms: a proposition is (conditionally) believed if, and only if, its two-sided (conditional) rank is positive. Interestingly, any other non-negative, finite threshold equally gives rise to a notion of belief (that is consistent and deductively closed in the sense of the next chapter): a proposition A is believed if, and only if, its two-sided rank is greater than some threshold n, τ (A) > n. This means ranking theory validates the “Lockean thesis” (Foley 2009, Hawthorne 2009) according to which an agent should believe a proposition if, and only if, her grade or degree of belief is sufficiently high. Furthermore, while it may appear unfair to reserve infinitely many numbers for belief (and for disbelief), and only the number zero for suspension of judgment, we now see that this may be changed by adopting a threshold other than zero. Of course, there are still only finitely many levels for suspension of judgment, and infinitely many levels for belief (and for disbelief).
4.2 Ranking theory: dynamic rules

Interpreted doxastically, the axioms of ranking theory are static norms for how the ideal doxastic agent should organize her beliefs and conditional beliefs at a given moment in time. These axioms are supplemented by three dynamic norms for how she should update or revise these beliefs across time if she receives new information of various formats. (One may argue that these norms are kinematic rather than dynamic. For we assume rather than require the agent to believe the new information she receives, and I do not say anything about what causes the agent to receive new information. The reason I call the norms dynamic is that they depend on the end we assume the agent to have.) These update rules are not competitors, though. Instead, the first update rule is just a special case of the second, and the third update rule can be defined in terms of the second.

The first update rule is defined for the case where the new information comes in the form a certainty. It mirrors the update rule of strict conditionalization from probability theory (Vineberg 2000).

Update Rule 1 (Plain Conditionalization, Spohn 1988) Suppose \(\varrho(\cdot) : \mathcal{A} \rightarrow \mathbb{N} \cup \{\infty\} \) is the ideal doxastic agent’s ranking function at time \(t \), and she deems \(E \) and \(\bar{E} \) from \(\mathcal{A} \) possible at \(t \). Suppose further between \(t \) and \(t' \) her ranks for \(E \) and \(\bar{E} \) are directly affected and she becomes certain of \(E \), but no logically stronger proposition. Finally, suppose her doxastic state is not directly affected in any other way such as forgetting, a change in her ends, etc. Then her ranking function at time \(t' \) should be \(\varrho_E(\cdot) = \varrho(\cdot | E) \).

Plain conditionalization asks the ideal doxastic agent to revise her old ranking function by holding on to those conditional beliefs whose condition is the most specific, i.e. the logically strongest, proposition she becomes certain of, subject to the constraint that her new doxastic state is a ranking function. Therefore, plain conditionalization satisfies the principle of categorical matching. In other terms one could perhaps say that plain conditionalization has the agent revise her beliefs by holding on to every “inferential belief” whose premise is the logically strongest proposition she becomes certain of as a result of some experiential event that is not under her doxastic control.

The second update rule is defined for the case where the new information comes in the form of new ranks for the elements of a partition. It mirrors the update rule of Jeffrey conditionalization from probability theory (Jeffrey 1983a) and generalizes plain conditionalization in the same way as the latter generalizes strict conditionalization.
4.2. RANKING THEORY: DYNAMIC RULES

Update Rule 2 (Spohn Conditionalization, Spohn 1988) Suppose \(q(\cdot): \mathcal{A} \to \mathbb{N} \cup \{\infty\} \) is the ideal doxastic agent’s ranking function at time \(t \), and she deems all cells of the “experiential” partition \(\{E_i \in \mathcal{A} : i \in I\} \) possible at \(t \). Suppose further between \(t \) and \(t' \) her ranks on this partition are directly affected and change to \(n_i \in \mathbb{N} \cup \{\infty\} \), where \(\min \{n_i : i \in I\} = 0 \). Finally, suppose her doxastic state is not directly affected on any finer partition, or in any other way such as forgetting, a change in her ends, etc. Then her ranking function at time \(t' \) should be

\[
q_{E_i \rightarrow n_i}(\cdot) = \min_{i \in I} \{q(\cdot | E_i) + n_i\}.
\]

Spohn conditionalization asks the ideal doxastic agent to revise her old ranking function by holding on to those conditional beliefs whose condition is one of the most specific propositions, or cells, whose doxastic standing has changed as a result of an experiential event that is not under her doxastic control (subject to the constraint that her new doxastic state is a ranking function). The restriction to hold fixed only those conditional beliefs whose condition is one of these most specific propositions whose doxastic standing has been directly affected is important.

Ida prefers red wine to white wine to no wine. She believes that there is red wine left if there is wine left at all, and that she will have red (but not white) wine tonight if she has wine at all. She also believes that she will have white (but not red) wine tonight given that there is white wine left, but no red wine. When she enters the cellar she seems to perceive that there is white wine left, but no red wine. The propositional content of the new information Ida receives is that there is white wine left, but no red wine. How firmly she comes to believe this propositional content depends on how reliable or trustworthy she deems her perception to be on this particular occasion. That there is white wine left, but no red wine logically implies that there is wine left. Ida also comes to believe this second propositional content (as she should according to Spohn conditionalization).

In this case Ida should hold on to her conditional belief that she will have red (but not white) wine tonight if there is red wine left, but no white wine. She should not also hold on to her conditional belief that she will have white (but not red) wine tonight if there is wine left. Otherwise she ends up having inconsistent beliefs! The same is true if Ida does not merely come to believe, but becomes certain that there is red wine left, but no white wine. This is the reason for the restriction in plain conditionalization to hold fixed only those conditional beliefs whose condition is the logically strongest proposition the agent becomes certain of. It is also the reason for the restriction in Spohn conditionalization to hold fixed only those conditional beliefs whose condition belongs to the most fine-grained or comprehensive experiential partition on which her ranks are directly affected.
The above illustrates that plain conditionalization is the special case of Spohn conditionalization where the experiential partition consists of E and \overline{E} and the new ranks are zero and infinity, respectively. Thus, really we are dealing with one update rule so far.

The third update rule is defined for the case where the new information reports the differences between the old and new ranks for the elements of a partition. It mirrors the update rule of Field conditionalization from probability theory (Field 1978) and is further developed in Bewersdorf (2013).

Update Rule 3 (Shenoy Conditionalization, Shenoy 1991)

Suppose $\varrho(\cdot) : A \rightarrow \mathbb{N} \cup \{\infty\}$ is the ideal doxastic agent’s ranking function at time t, and she deems all cells of the experiential partition $\{E_i : i \in I\}$ possible at t. Suppose further between t and t' her ranks on this partition are directly affected and change by $z_i \in \mathbb{N} \cup \{\infty\}$, where $\min \{z_i : i \in I\} < \infty$. Finally, suppose her doxastic state is not directly affected on any finer partition, or in any other way such as forgetting, a change in her ends, etc. Then her ranking function at time t' should be

$$
\varrho_{E, z_i}(\cdot) = \min_{i \in I} \{\varrho(\cdot \cap E_i) + z_i - m\}, \text{ where } m = \min_{k \in I} \{z_k + \varrho(E_k)\}.
$$

In contrast to Field conditionalization, whose input parameters do not behave like probabilities, the input parameters of Shenoy conditionalization behave like ranks. It is required that at least one of the z_i be finite. Hence, they can be “normalized” (by defining $z'_i = z_i - \min_{k \in I} \{z_k\}$) so that at least one of them is zero. Then they can be interpreted as the values of a ranking function (on the algebra generated by the experiential partition), and updating as the combination of two ranking functions.

Assume that the algebra A is the power-set $\mathcal{P}(W)$ of the non-empty set of all possible worlds W so that each possible world w in W has its own rank, namely the rank assigned to the singleton proposition $\{w\}$. Spohn conditionalizing E and \overline{E} to 0 and n, respectively, keeps the relative positions of all possible worlds in E and all possible worlds in \overline{E} fixed. It improves the rank of E to 0 – remember: low numbers represent low grades of disbelief – and it changes the rank of \overline{E} to n. In contrast to this, Shenoy conditionalizing E and \overline{E} by 0 and z, respectively, improves the possible worlds within E by z, as compared to the possible worlds in \overline{E}. m is a normalization parameter. It ensures that the tautological proposition W is assigned rank zero so that Shenoy conditionalization yields a function satisfying the first axiom.

Shenoy conditionalization is definable in terms of Spohn conditionalization:

$$
\varrho_{E, z_i}(\cdot) = \varrho_{E \rightarrow n_i}(\cdot), \text{ where } n_i = z_i + \varrho(E_i) - m.
$$

Thus, really we are still dealing with one update rule. I will call it the update rule.
4.2. RANKING THEORY: DYNAMIC RULES

Spohn conditionalization is result-oriented. The numbers n_i characterize the result of the experiential event on the agent’s ranks for the cells E_i: $q_{E_i \rightarrow n_i}(E_i) = n_i$. These new ranks depend in part on the agent’s initial ranks, which is why the numbers n_i do not characterize the impact of the experiential event independently of the agent’s initial beliefs.

In contrast to this, the numbers z_i in Shenoy conditionalization characterize the impact of the experiential event independently of the agent’s initial beliefs (except for the scale of the latter). They do so in the sense that the rank of E_i is deteriorated by $z_i - \min_{k \in I} \{z_k\}$ relative to the rank $\min_{k \in I} \{z_k\}$ of the “best” cells. However, the best cells are not, in general, the cells with the lowest initial rank. They are so only in the special case of two cells E and \bar{E} and parameters 0 and z, respectively. In this special case it holds that $\tau_{E \uparrow 0, \bar{E} \uparrow z}(E) - \tau(E) = z$ and $\tau_{E \uparrow 0, \bar{E} \uparrow z}(\bar{E}) - \tau(\bar{E}) = -z$.

The latter need not be true anymore when the experiential partition contains more than two propositions. That is, the grade to which the experiential event confirms a cell E_i is not, in general, determined by the parameters z_k.

Like probabilistic degree of incremental confirmation (Huber 2005a; 2008a; b), rank-theoretic grade of confirmation is defined as difference between prior and posterior grade of belief: $\tau_{E_i \uparrow z_i}(A) - \tau(A)$ is the grade to which the experiential event confirms the proposition A. Except for the special case of the grade of confirmation of a cell in an experiential partition with two cells, this difference depends on the parameters z_i and the agent’s prior grade of disbelief. Indeed, it does so twice. Ranks are not measured on an absolute scale. So, the parameters z_i (and, hence, grade of confirmation) are meaningful only relative to the scale on which the agent’s prior grades of disbelief are measured. This is different in the probabilistic case. The input parameter α_i of Field conditionalization is positive if, and only if, the experiential event confirms, i.e. raises the probability of, the cell E_i. So, these parameters, unlike those of Shenoy conditionalization, can be interpreted as degrees of incremental confirmation.

Plain, Spohn, and Shenoy conditionalization characterize the new information numerically. This reflects the fact that the quality of new information varies with how reliable or trustworthy the agent deems its source: it makes a difference if the weatherperson Ida has never met predicts that it will rain, if a friend Ida trusts tells her so, or if Ida seems to see for herself that it is raining. Simplifying somewhat, in each case the propositional content Ida comes to believe is that it is raining, but the effect of the new information on her old beliefs will be a different one in each case. The difference in how reliable or trustworthy Ida deems the sources of information is reflected in the numbers accompanying this propositional content.
In reality things are more complicated. The propositions the experiential event causes the agent to come to believe to various grades may not be about reality, but about what reality appears, or seems, to be. Then, the source of information the agent deems reliable or trustworthy to some degree may not be the weatherperson, but the audio-visual apparatus that is exposed to the weather report on a particular occasion. Furthermore, these experiences may, in general, include all her senses, and not just her auditory and visual systems. Finally, the complete “contents” of these experiences may not be expressible by a proposition in her language.

Fortunately none of these simplifying assumptions are essential. All that is required is that the agent can identify all propositional contents whose doxastic standing is directly affected by the experience she undergoes. Since any such set of propositions generates a unique least fine-grained or comprehensive partition, each experience generates exactly one experiential partition. Its elements are the logically strongest propositions which are directly affected by the experience. Of course, we humans find it difficult to determine by introspection what we have experienced directly, and what we have subsequently inferred from experience (and we rarely, if ever, report the contents of our experiences in undigested form). However, this anti-luminosity or intransparency is our problem, not the theory’s.

The axioms of ranking theory ask of the agent that her conditional beliefs be conditionally consistent. Its update rule asks of her that they remain so. It does so by asking her to hold on to those conditional beliefs whose conditions are the logically strongest propositions which are directly affected by the experience.

Now that Hume’s “proportions” have been taken into account, and we have made explicit the dependence on the agent’s language or algebra of propositions, we can be a bit more precise. The update rule asks the agent to hold on to those conditional grades of disbelief whose conditions are elements of the experiential partition, a requirement known as rigidity: \(\varrho(\cdot \mid E_k) = \varrho_{E_i \rightarrow n_i}(\cdot \mid E_k) \) for all cells \(E_k \) in the experiential partition. In fact, together with the constraint that \(\varrho_{E_i \rightarrow n_i}(E_k) = n_k \), this is an alternative, but equivalent, formulation of Spohn conditionalization.

The experiential partition has to be the most fine-grained or comprehensive partition on which her ranks are directly affected. It needs to list all of the logically strongest propositions which are directly affected by the experiential event. This is, of course, but a variant of Carnap (1947b)’s “principle of total evidence.”

Ida believes that there is red wine left if there is wine left at all, and that she will have red (but not white) wine tonight if she has wine at all. She also believes that she has white (but not red) wine tonight given that there is white wine left, but no red wine. She receives the information \(E \) that there is white wine left, but no red wine.
The update rule asks Ida to hold on to her grades of belief conditional on E — that is, conditional on there being white wine left, but no red wine. It also asks her to hold on to her grades of belief conditional on the negation of E, \overline{E} — that is, conditional on the disjunctive assumption of there being red wine left, or there being no white wine left. In particular, Ida should hold on to her grade of belief that she has white (but not red) wine tonight given that there is white wine left, but no red wine. However, Ida is not required to hold on to her grade of belief that she has red (but not white) wine tonight if she has wine at all. Indeed, depending on the details of Ida’s doxastic state, she may well be required to give up this conditional belief and adopt the new conditional belief that she has white (but not red) wine tonight given that she has wine at all.

It is worth noting that the update rule goes beyond the requirement that the agent hold on to her qualitative conditional beliefs. It is possible for two agents to have the same grades of disbelief initially, experience the same changes to their grades of disbelief for the cells of a partition, hold the same qualitative beliefs conditional on all cells of the experiential partition after revising their ranking functions, yet then assign different grades of disbelief. In contrast to the axioms of ranking theory, its update rule cannot be stated in qualitative terms, not even conditional ones. Hume’s “proportions” matter.

If the agent does not receive any new information, the update rule asks her to hold on to her grades of disbelief. This feature bestows the agent’s doxastic state with a certain kind of stability that one may find objectionable. Why should the agent not be allowed to change her mind in response to pondering a question or reflecting upon a matter, but seemingly without receiving new information?

The agent should indeed be allowed to so change her mind. It is just that deliberation can provide her with new information – information about previously unconceived alternatives, say, or logical or other relationships between various sentences or propositions. In order to inform, information need not be about the external reality, nor need it originate outside the agent’s mind.

We humans are never in the situation of not receiving any information. So, any intuitive judgments about this case should be handled with care. The reason for this is two-fold. For one, whenever time passes, we receive some information – if nothing other than that time has passed. More importantly, we have a wealth of expectations, in the non-technical sense of this term, about the future that would quickly lead to the erosion of our beliefs if our expectations did not materialize. After a night on the town Ida says good-bye to her friends. She expects them to send her a message once they are home safely. Ida would be alarmed if she did not hear from them. Seemingly not receiving information can be highly informative.
Time may pass without Ida being aware of it, and Ida may falsely believe time to have passed. The update rule requires Ida to hold on to her beliefs in the former case, and to revise them in the latter. The reason is that the update rule is concerned with time as it appears to the agent, not actual time. Moreover, t' may be smaller than t. What matters is what time the agent considers to be the present, no matter whether she thinks she has arrived at it from the past or the future.

Throughout the previous chapters I have stressed that we are assuming the agent to believe the new information she receives, rather than requiring her to do so. We have now seen what form the new information takes: it comes in the form of new ranks for the cells of a partition all of which are elements of the agent’s language that she has deemed possible initially. We will see in section 6.1 what the agent should do if these propositions do not belong to her language.

The experiential event determines which propositions are in the experiential partition. The new grades to which the agent disbelieves these propositions merely depend on the experiential event. They are not determined by it. This is so because these new grades of disbelief also depend on the agent’s initial grades of disbelief, as well as the grades to which she deems the source of information trustworthy. The latter deemings are determined by the experiential event – except for their scale, and except that the agent has to organize them as she has to organize her beliefs: consistently in the sense that $\min_{i \in I} \{z_i\} < \infty$. Otherwise they cannot be used as input. It is here, then, where causes turn into reasons. The deemings are caused by the experiential event, but to use them as reasons or input for the update rule, the agent has to organize them consistently. This means our assumption that the agent believes the new information she receives contains an important element of normativity: to reason with them, the agent must organize the experientially caused deemings in a consistent manner.

It is also worth noting that the source of information is to be understood as token rather than type: what matters is the report of the source on a particular occasion, not some generic source. How trustworthy the agent deems the report of a source of information is determined by the collection of all parameters z_i.

Finally, the update rule satisfies the principle of categorical matching: it turns an old ranking function and new information into a new ranking function. Given regularity, we can assume the old ranking function to be regular, as well as all input parameters of the new information to be finite. In this case the update rule yields a new ranking function that is still regular. Hence, the update rule satisfies the principle of categorical matching twice: it turns ranking functions and new information into ranking functions; and, it turns regular ranking functions and new information whose input parameters are finite into regular ranking functions.
4.3 Iterated belief revision revisited

In ranking theory, the ideal agent’s old doxastic state is represented by a ranking function. The latter numerically represents the strength of her beliefs. In addition, it determines her belief set. The new information is also represented quantitatively. It completely specifies the agent’s new doxastic attitude towards the propositions in the experiential partition. Thus, ranking theory fully takes into account Hume’s “proportions.”

Furthermore, the update rule of ranking theory satisfies Gärdenfors & Rott (1995)’s principle of categorical matching twice: the ideal agent’s doxastic state is represented as a ranking function (that is regular) before and after the revision process. It does so by requiring the agent to hold on to those conditional grades of disbelief whose conditions are the logically strongest propositions which are directly affected by some experiential event, subject to the constraint that the new doxastic state is a ranking function. Specifically, the agent’s old ranking function and the new information she receives determine her new ranking function. If we require regularity, as we do, the update rule is in a position to handle indefinitely iterated belief revisions. Let us see how.

Ida’s ranking function \(R \) will assign a positive rank to the proposition \(\neg A \) that it will not be sunny on Wednesday. Consequently, her rank for \(A \) will be zero. This is so because the first and third axiom imply that, for any proposition \(X \), at least one of \(X \) and \(\neg X \) has rank zero. \(R \) will assign a greater rank to the proposition \(\neg B \) that it will not rain on Tuesday. Finally, \(R \) will assign an even greater rank to the proposition \(\neg C \) that weather forecasts are not always right. In other words, where we previously had \(\bot \prec \alpha \prec \beta \prec \gamma \), we now have \(0 < R(\neg A) < R(\neg B) < R(\neg C) \).

This holds true in general. For a regular ranking function \(R \), the relation \(\alpha \leq_R \beta \) if, and only if, \(R(\{\alpha\}) \leq R(\{\beta\}) \) is an entrenchment ordering for the belief set \(B_R = \{ \gamma \in L : R(\{\gamma\}) > 0 \} \). This shows that, when the assumption of regularity is made, ranking theory satisfies the AGM postulates for belief revision. We can use the results mentioned in the previous chapter to reformulate this, where I continue to assume that \(R \) is regular.

The set of propositions \(S_R = \{ R^{-1}(n) \subseteq W : n \in \mathbb{N} \} \) is a system of spheres in \(W \) centered on \(R^{-1}(0) \), where \(R^{-1}(n) = \{ w \in W : R(\{w\}) = n \} \) is the set of possible worlds that are assigned rank \(n \). Here I make the simplifying assumption that the algebra of propositions is the power set of \(W, \wp(W) \). If this assumption is not made, the definitions of the system of spheres \(S_R \), and of the implausibility ordering \(\leq_R \) below, are slightly more complicated.
An agent with ranking function R believes a proposition A if, and only if, $R^{-1}(0) \subseteq A$, where $R^{-1}(0) = \{w \in W : R(\{w\}) = 0\}$ is called her belief core. The relation

$$w \leq_R w' \text{ if, and only if, } R(\{w\}) \leq R(\{w'\})$$

is an implausibility ordering on W whose center is the set of least implausible worlds, $R^{-1}(0) = \{v \in W : R(\{v\}) \leq R(\{w\}) \text{ for all } w \in W\}$. The latter is again the agent’s belief core. It is equal to the conjunction or intersection of all of her beliefs, $\bigcap \{C \subseteq W : R(\{C\}) > 0\}$.

The update rule of ranking theory also satisfies the four additional postulates for iterated belief revision proposed by Darwiche & Pearl (1997). This can be verified (see Spohn 2012: 91ff) by checking that the four postulates $\leq 5 \leq 8$ hold for \leq_R and \leq_{R^*}, where R^* is any ranking function that results from R by what we may call a “Spohn shift” on the proposition E, i.e. an application of Spohn conditionalization to the experiential partition $\{E, \bar{E}\}$ with input parameters $R^*(E) = 0$ and $R^*(\bar{E}) > 0$.

On Monday Ida receives the information that the weather forecast for Tuesday and Wednesday is rain. In order for Spohn conditionalization to tell her how to revise her beliefs, she has to tell us how firmly she now, on Monday, disbelieves the proposition \overline{D} that it is not the case that the weather forecast for Tuesday and Wednesday is rain. As an approximation (more on this in the next chapter), it suffices if we determine how many information sources saying \overline{D} it would now, on Monday, take for her to give up her disbelief in \overline{D} – as compared to how many information sources saying Y it would have taken earlier, before Monday, for her to give up her disbelief in \overline{Y} for $Y = A, \overline{A}, B, \overline{B}, C, \overline{C}, D, \overline{D}$.

Suppose Ida’s old ranks are $R(\overline{A}) = 1$, $R(\overline{D}) = 2$, $R(\overline{B}) = 5$, and $R(\overline{C}) = 7$, and her new rank for \overline{D} is $R^*(\overline{D}) = 13$. According to Spohn conditionalization, Ida’s other new ranks are:

$$R^*(Y) = \min\{R(Y | D) + 0, R(Y | \overline{D}) + 13\}$$

Thus, to calculate Ida’s new ranks $R^*(Y)$ we need to have her old conditional ranks $R(Y | D)$ and $R(Y | \overline{D})$, as well as her new ranks for the conditions D and \overline{D}. This in turn requires us to have her old ranks for various conjunctions. Suppose the numbers, Hume’s “proportions”, are as in figure 3. Then Ida’s new ranks are $R^*(\overline{C}) = 6$, $R^*(\overline{B}) = 7$, $R^*(A) = 7$.
4.3. ITERATED BELIEF REVISION REVISITED

For R:

<table>
<thead>
<tr>
<th></th>
<th>B</th>
<th>\bar{B}</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>20</td>
</tr>
<tr>
<td>\bar{A}</td>
<td>2</td>
<td>∞</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>20</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>\bar{C}</th>
</tr>
</thead>
<tbody>
<tr>
<td>\bar{A}</td>
<td>8</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>33</td>
<td>∞</td>
</tr>
</tbody>
</table>

For R^*:

<table>
<thead>
<tr>
<th></th>
<th>B</th>
<th>\bar{B}</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>8</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>18</td>
</tr>
<tr>
<td>\bar{A}</td>
<td>6</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>18</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>\bar{C}</th>
</tr>
</thead>
<tbody>
<tr>
<td>\bar{A}</td>
<td>8</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>33</td>
<td>∞</td>
</tr>
</tbody>
</table>

Note that C is a proposition Ida believes both before and after revision by D, $R(C) > 0$ and $R^*(C) > 0$, although \bar{D} is positively relevant to, so not independent of, C in the sense that $R(C \mid D) = 7 > 6 = R(C \mid \bar{D})$. In other words, Ida receives new information D whose negation is positively relevant to, so not independent of, her belief that C without making her give up her belief that C. On the other hand, if Ida considers \bar{D} independent of a proposition Y before revision by D, then she also does so after revision by D.

This holds true in general. Suppose two propositions X and E are independent according to a ranking function R (Spohn 1999), i.e.

$$R(X \cap E) + R(\bar{X} \cap \bar{E}) = R(X \cap \bar{E}) + R(\bar{X} \cap E).$$

Then X and E are independent according to any ranking function R^* that results from R by a Spohn shift on the experiential partition $\{E, \bar{E}\}$. This feature, to which we will return in section 6.3, vindicates the idea behind Jin & Thielscher (2007)’s proposal that belief revision preserve doxastic independences. It does so by fixing their notion of doxastic independence. X is positively (negatively) relevant to E if, and only if, the left-hand side above is smaller (greater) than the right-hand side.

Note also that A is a proposition Ida believes conditional on the disjunctive
assumption $C \cup D$ before she revises her beliefs by D, since $R\left(\overline{A} \mid C \cup D \right) = 1 > 0 = R \left(A \mid C \cup D \right)$. However, after revision by D she believes the negation of A, \overline{A}, conditional on $C \cup D$, since $R^* \left(A \mid C \cup D \right) = 7 > 0 = R^* \left(\overline{A} \mid C \cup D \right)$. In other words, Ida does not hold on to her conditional belief in A given $C \cup D$, even though $C \cup D$ is a logical consequence of the new information D and also believed by her. She gives up this conditional belief and replaces it with the new conditional belief that \overline{A} given $C \cup D$. This illustrates that the agent is merely required to hold on to those conditional grades of disbelief whose conditions are the logically strongest propositions which are directly affected by the experience she undergoes, i.e. the conditions which are cells of the experiential partition. Ida is merely required to hold on to her grades of disbelief conditional on the proposition D, and conditional on its negation \overline{D}. This is why it is crucial that the experiential partition be maximally specific.

Spohn conditionalization gives Ida a complete new ranking function R^* that she can use to revise her newly acquired belief set $B^* = \{ Y \in \mathcal{A} : R^* \left(Y \right) > 0 \}$ a second time when, on Tuesday, she receives the information that it is sunny after all. All she has to do is tell us how strongly she then disbelieves the proposition B that it will rain on Tuesday. Suppose Ida’s very new rank for B is $R^{**} \left(B \right) = 13$.

For R^*:

<table>
<thead>
<tr>
<th></th>
<th>B</th>
<th>\overline{B}</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>8</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>18</td>
</tr>
<tr>
<td>\overline{A}</td>
<td>6</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>33</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>C'</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>\overline{C}</td>
<td>8</td>
<td>18</td>
</tr>
<tr>
<td>\overline{D}</td>
<td>20</td>
<td>18</td>
</tr>
</tbody>
</table>

For R^{**}:

<table>
<thead>
<tr>
<th></th>
<th>B</th>
<th>\overline{B}</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>21</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>33</td>
<td>26</td>
</tr>
<tr>
<td>\overline{A}</td>
<td>0</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>46</td>
<td>26</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>C'</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>\overline{C}</td>
<td>33</td>
<td>33</td>
</tr>
<tr>
<td>\overline{D}</td>
<td>26</td>
<td>26</td>
</tr>
</tbody>
</table>
Then Ida’s very new ranks are $R^* (A) = 1$, $R^* (C) = 11$, $R^* (D) = 11$ (figure 4).

This means that Ida did not mishear the weather forecast, but was too gullible (or so we assume for purposes of illustration). Therefore, she has to give up her belief C that weather forecasts are always right. In addition, she has to regain her belief A that it will be sunny on Wednesday.

Figure 5 pictures Ida’s doxastic career as a sequence of “onions.” In contrast to the AGM theory, the layers now carry numbers which reflect how far apart they are from each other according to the ideal agent’s doxastic state. Figure 6 pictures this situation differently. It allows for empty layers and has one, possibly empty, layer $R^{-1} (n)$ for each natural number n. Ida’s old rank for D is two, $R (D) = 2$, and her old rank for D is zero, $R (D) = 0$. Ida’s new ranking function R^* arises from her old ranking function R by first improving the D-worlds by two ranks so that the new rank of D is zero, $R^* (D) = 0$. Then the D-worlds are deteriorated by thirteen ranks so that the new rank of D is thirteen, $R^* (D) = 13$. The relative positions of the D-worlds, and of the D-worlds, expressed in the conditional ranking functions $R (\cdot | D) = R^* (\cdot | D)$ and $R (\cdot | D) = R^* (\cdot | D)$, respectively, are kept fixed.

We see that ranking theory can handle indefinitely iterated revisions of belief. It can do so in contrast to the AGM theory. It can do so in contrast maybe also to Bayesianism. Here is why. The Bayesian agent is sometimes forced to assign probability zero to a consistent proposition – and no probability to a set of possible worlds (Vitali 1905) – if her probability measure is countably additive. Neither of these problems can be overcome by the introduction of infinitesimal probabilities, unless one also drops countable additivity (but then they can be overcome: see Bernstein & Wattenberg 1969). Update rules for probabilistic degrees of belief are generally defined in terms of conditional probabilities. The latter are defined only for conditions with positive probability. So, a Bayesian agent may find herself in the position that she cannot revise her degrees of belief when she undergoes an experience that directly affects a proposition she initially assigned degree of belief zero out of necessity, but that she now assigns a positive degree of belief.

To enable the Bayesian agent to conditionalize on such propositions she is sometimes equipped with a Popper-Rényi (PR) function P, which is defined for pairs of propositions. It is possible that $0 < P (A | C) < 1$ even if $P (C | W) = 0$. However, as noted by Harper (1976b: 243), it does not help to identify the agent’s initial degree of belief function with $P (\cdot | W)$, and her degree of belief function after becoming certain of E with $P (\cdot | E)$. The reason is that $P (\cdot | E)$ is merely a classical probability measure. We would violate the principle of categorical matching and be unable to handle iterated revisions of degrees of belief.
To do better we might represent the agent’s initial doxastic state with a PR function, and find an update rule that turns it into a new PR function. To this end Spohn (2012: 206ff) considers the PR analogue of Jeffrey conditionalization. The latter turns each PR function $P(\cdot \mid \cdot)$ into a new PR function $P_{E_i \rightarrow p_i}(\cdot \mid \cdot)$, but Spohn finds it too restrictive (for the same reason that Morgan ms finds the PR analogue of strict conditionalization too restrictive). To be fair, though, this is due to Spohn’s assumption that the input parameters for the cells of the experiential partition are the same for just about all conditions. If the agent’s doxastic state is represented by a two-place PR function, we must allow the input parameters p_k for the cells E_k to vary with the condition C in the second argument place. That is, we must not assume $P_{E_i \rightarrow p_i}(E_k \mid C)$ to equal p_k for just about every condition C. Instead, we need to extend the principle of categorical matching to the experiential input: the format of the experiential input must match the format of the prior and posterior doxastic state.

Jeffrey and Field conditionalization satisfy this extension of the principle of categorical matching: the prior and posterior doxastic state are degrees of belief, and the experiential input are new degrees of belief, or the amounts by which these change, respectively. So do Spohn and Shenoy conditionalization: the prior and posterior doxastic state are grades of disbelief, and the experiential input are new grades of disbelief, or the amounts by which these change, respectively. If the agent’s doxastic state is represented by a PR function, then the extension of the principle of categorical matching requires that the experiential input are new conditional degrees of belief, or something that specifies these together with the agent’s prior doxastic state. For this is what the prior and posterior doxastic state are on this account.

Allowing the input parameters to vary with the condition solves the problem of restrictiveness: just as every probability measure can be obtained from every regular probability measure on the same algebra by Jeffrey conditionalization; and just as every ranking function can be obtained from every regular ranking function on the same algebra by the update rule; so every PR function can be obtained from every normal PR function on the same domain by the PR analogue of Jeffrey conditionalization with input parameters that may vary with every non-empty condition. Here a PR function is normal if, and only if, $\Pr(\overline{C} \mid C) < 1$ for every non-empty proposition C in the underlying algebra. Normality is for PR functions what regularity is for classical probability measures – except that it is always possible to define a normal PR function, no matter how rich or fine-grained the underlying algebra of propositions.
Unfortunately, this “solution” is no solution: if the input parameters can vary with every non-empty condition, then there is no guarantee that the result is a PR function. Once again we violate the principle of categorical matching and are unable to handle iterated revisions of conditional degrees of belief.

The Bayesian is, of course, free to propose constraints on the input parameters which guarantee that the update rule results in a PR function. However, there is reason to be skeptical this will do, as Boutilier (1995: 180) confirms: “[w]e conclude that the revision of probabilistic belief states is not as well understood as we might have imagined [nor] as well behaved as we might hope.” Similarly Morgan (ms: 8), who notes that this “requires combining [his alternative to the PR analogue of strict conditionalization] with a conditionalized version of Jeffrey” conditionalization – but then adds: “space limitations prevent elaboration here.”

What is the problem? First, note that a PR function can be represented by an implausibility ordering with a classical probability measure for each position in the ordering, except for the last position which is equipped with the function that assigns 1 to all propositions (van Fraassen 1976, Spohn 1986): $P(A | B) = x$ if, and only if, the first classical probability measure in this ordering which assigns positive probability to B assigns probability x to A given B. In other words, conditional degrees of belief can be represented as implausibility orderings with degrees of belief. So, the situation for iterated revisions of degrees of belief is parallel to that for iterated revisions of beliefs. Spohn (2012: 209ff) contends that the attempt to provide an update rule for PR functions is doomed to fail in the same way as the attempt to handle iterated revisions of belief in the AGM theory.

Now, Spohn’s argument is one by analogy, and the analogy has to be made with respect to two-dimensional belief revision theory, not the one-dimensional AGM theory. For two-dimensional belief revision is the qualitative counterpart to making the input parameters new positions in the implausibility ordering with new degrees of belief – which, by the above representation, is allowing the input parameters to vary with the condition, but constraining them so they result in a PR function. Still, in section 3.3 we have not found two-dimensional belief revision to be able to adequately handle iterated revisions of belief either. Therefore, the burden of proof lies with the Bayesian.

If the problem is the same, so is the solution. Spohn (2012: 210f, relying on his 2006b) goes on to show that the Bayesian can do better by subscribing to ranking theory. A normal PR function can be represented by an implausibility ordering with a classical probability measure for each position in the ordering. If we strengthen the comparative implausibility ordering to a quantitative regular ranking function, just as we have done at the beginning of this section, we arrive
at ranked probabilities. The latter are regular ranking functions with a classical probability measure for each rank that is taken on by some non-empty proposition.

There is also an update rule for ranked probabilities (Boutilier 1995: 169ff proposes it, too). It is the update rule for ranking functions modulo the addition of a classical probability measure for each rank \(n \) that is taken on by some non-empty proposition (its domain is an algebra over the set of possible worlds \(R^{-1}(n) \) which are assigned this rank). This update rule satisfies the principle of categorical matching and its extension. It can also handle iterated revisions of degrees of belief: the Spohn shift of a ranked probability in response to finite rank-theoretic and positive probabilistic input parameters is a ranked probability. Moreover, this update rule is not restrictive: every ranked probability can be obtained from every regular (in both the probabilistic and rank-theoretic sense) ranked probability that is defined on the same domain. The Bayesian can handle iterated revisions of degrees of belief by subscribing to ranking theory. Whether she can do so without taking this leap remains to be seen.
To conclude this section and chapter, as well as to pave the way for the next, note that there are at least two orthogonal dimensions along which belief can be
CHAPTER 4. CONDITIONAL BELIEF

graded. One can grade the believing relation. One can also grade the agent’s unwillingness to give up a belief in response to new information. Bayesians such as Ramsey (1926) grade belief in the former way. Following Quine (1951), belief revision theorists grade belief in the second way. Unlike the grading by Ramsey (1926)’s partial beliefs, the grading involved in Quine (1951)’s web of belief is essentially dynamic or subjunctive: it is tied to the revision of belief.

In the way it is developed in the next chapter, ranking theory grades belief along the second dimension: an agent’s rank for a proposition represents how reluctant she is to give up her disbelief in this proposition if she received new information. This has two consequences.

First, it does not make sense to consider rank-theoretic thresholds for disbelief greater than zero (see section 4.1). Consequently, ranks are measured on a ratio scale, not an interval scale. The agent’s reluctance to give up a disbelief cannot be positive if she does not even hold this disbelief. In the AGM theory this is reflected in the fact that the agent’s entrenchment ordering is defined only relative to her belief set. A sentence is at the bottom of the agent’s entrenchment ordering if, and only if, she does not believe it. Only beliefs in the narrow sense can be non-minimally entrenched. The reason is that the agent’s unwillingness to give something up that she does not even have cannot be positive.

Second, we can combine probability theory and ranking theory other than through ranked probabilities, by grading belief simultaneously along both of the above mentioned dimensions. We can follow the Bayesian and replace belief by partial belief, i.e. probabilistic degree of belief. Then we can follow the belief revision theorist and grade the agent’s reluctance to give up her partially held beliefs. Perhaps this is what Keynes (1921) has in mind when he distinguishes between probability and weight of evidence.

An example by Popper (1935/2002: app. *ix) may illustrate this idea. In the absence of any information, Bay may assign a probabilistic degree of belief of a half to the proposition that the coin will land on heads. In the presence of the information that the coin is fair, Bay may assign the same probabilistic degree of belief to this proposition. However, Bay’s former partial belief is less entrenched than her latter. The information that the coin is fair provides weighty evidence for her second partial belief. In contrast to this, there is no information to provide evidence for her first partial belief.

Formally, this combination is achieved as follows. The partial beliefs the agent might have – now or in response to information – are represented by a non-empty set of probability measures. The agent’s ranking function is defined on the powerset of this set. It represents the agent’s reluctance to give up her partial beliefs.
Chapter 5

Why Should I?

In this chapter I will first answer the question why conditional beliefs should obey the axioms and update rule of ranking theory. This includes a defense of the conditional theory of conditional belief which characterizes conditional belief in terms of belief and counterfactuals. Then I will discuss the view of rationality, or normativity, underlying this answer. I will conclude by discussing conditional obligation and conditional belief. I rely on Huber (2007b; 2014c; 2017b).

5.1 The consistency argument

Interpreted doxastically, ranking theory is a normative theory which addresses the question how an ideal doxastic agent should organize her beliefs and conditional beliefs at a given moment in time, and how she should revise these beliefs across time if she receives new information. Why should she obey the norms of ranking theory? That is, why should she organize her beliefs and conditional beliefs at a given moment in time according to the axioms of ranking theory? Why should she revise these beliefs across time according to its update rule if she receives new information? Who are we, Ida asks, to tell her what – or rather: how – to believe?

In a nutshell, the answer is that she should do so, not because we tell her to, but because doing so is a means to attaining her ends, which we hypothesize to be to hold true and sufficiently informative beliefs. This answer needs to be spelled out in more detail. After all, the norms of ranking theory govern quantitative grades of conditional disbelief, whereas the end is formulated in terms of qualitative, non-conditional beliefs. So, how do we get from qualitative, non-conditional beliefs to quantitative grades of conditional disbelief?
Recall that suspension of judgment differs from belief not in kind, but in grade: it is the “belief” that is held with the least firmness. The ends we assume the agent to have include having an opinion on as many propositions as she can, holding no false belief and as many true beliefs (each time in the narrow sense) as she can, and no ends that can conflict with these. The opinions she can have are delimited by the propositions she understands.

The first requirements of ranking theory are the axioms that define an algebra of propositions over a non-empty set of possible worlds. For the time being we take the latter set to be given, and assume the agent to understand all propositions which are formally represented by sets of possible worlds. The algebra is the set of propositions the agent has an opinion on. Why should she have an opinion on the tautological proposition that is formally represented by the set of all possible worlds? Because having a belief in – and, hence, an opinion on – this proposition is a necessary condition for her to hold as many true beliefs as she can without taking what we call an additional risk: a risk that may result in her not attaining some of her other ends (i.e., to hold no false belief and to have an opinion on as many propositions as she can) and that she does not take already.

Why should the agent have an opinion on the negation of a proposition she has an opinion on? If she believes a proposition, disbelieving – and, hence, having an opinion on – its negation is a necessary condition for her to hold as many true beliefs as she can without taking an additional risk. Similarly if she disbelieves a proposition. If she suspends judgment with respect to a proposition, she should also suspend judgment with respect to its negation. Otherwise she does not have an opinion on as many propositions as she can without taking an additional risk.

Why should the agent have an opinion on the disjunction of a(n arbitrary) number of propositions she has an opinion on? If she believes at least one of these propositions, she should also believe – and, hence, have an opinion on – their disjunction. Otherwise she does not hold as many true beliefs as she can without taking an additional risk. Similarly if she disbelieves all these propositions. If she does not believe any of them, nor disbelieves all of them, she should suspend judgment with respect to their disjunction. Otherwise she does not have an opinion on as many propositions as she can without taking an additional risk.

In fact, given that the agent has the end of having an opinion on as many propositions as she can, the set of her opinions should be the set of all propositions, i.e. the powerset of the set of all possible worlds. (The weaker requirement that her set of opinions be a complete algebra is already justified by restricting her opinions to beliefs and disbeliefs in the narrow sense, and by assuming her ends to include holding no false belief and as many true beliefs as she can.)
5.1. THE CONSISTENCY ARGUMENT

The next requirement is that the agent’s grades of disbelief are a functional relationship between the propositions she (understands and) has an opinion on and the natural numbers extended by infinity that satisfies the axioms and update rule of ranking theory. The agent attains the end (of having an opinion on as many propositions as she can and) of holding no false belief and as many true beliefs as she can, only if her beliefs are consistent and deductively closed (in the complete sense of the definition in the appendix to chapter 5). If her beliefs are not consistent, at least one of them is false. If her beliefs are not deductively closed, she does not hold as many true beliefs as she can without taking an additional risk. Therefore, her beliefs should be consistent and deductively closed.

Part two of our consistency requirement is a special case of deductive closure. Suppose the agent simultaneously believes a proposition and refrains from doing so, and she does not disbelieve this proposition (if she does, her beliefs are not consistent). This means she suspends judgment about a proposition that follows logically from a proposition she believes – in violation of deductive closure. An analogous argument shows that she should not simultaneously suspend judgment about a proposition and refrain from doing so.

To say how the agent’s grades of disbelief should behave with respect to an end that is formulated in terms of qualitative belief (in the wide sense) requires us to establish a connection between beliefs and grades of disbelief.

An agent’s grade of disbelief for a proposition \(A \) equals \(r \) if, and only if, \(r \) is the smallest number \(n \) such that she would not disbelieve \(A \) if she received the information \(A \) from \(n \) sources she deemed minimally positively reliable – mp-reliable – about \(A \), as well as independent, and this was all that directly affected her doxastic state.

The last clause implies that the agent’s ends are held fixed.

If the agent does not disbelieve a proposition, her grade of disbelief for it is zero. Her grade of disbelief for a proposition is higher, the more information sources of the sort described it would take for her to give up her disbelief in it. If no finite number of information sources would make her stop disbelieving a proposition, her grade of disbelief for it is infinite.

It follows that the agent has a grade of disbelief for every proposition \(A \) she (understands and) has an opinion on. To see this, let us first say a bit about what it means for the agent’s doxastic state to be directly affected. Any change to the agent’s doxastic state is initiated by a direct effect on it in the sense that her doxastic state would not change at all if nothing directly affected it.
Now, if the agent does not disbelieve A and she received the information A from zero sources she deemed independent and mp-reliable about A, and this was all that directly affected her doxastic state – i.e., if nothing directly affected her doxastic state – she would still not disbelieve A. The reason is that this is how we have characterized direct effects on the agent’s doxastic state. Thus, her grade of disbelief for A is zero. If she disbelieves A and there is a smallest number n such that she would give up her disbelief in A if she received the information A from n sources she deemed independent and mp-reliable about A, and this was all that directly affected her doxastic state, her grade of disbelief for A is this number. If there is no such smallest number n, her grade of disbelief for A is infinite. Thus, the agent has a grade of disbelief for every proposition in her language. The proof of theorem 5 establishes that her grades of disbelief should be unique.

One of several ways to think of our connection is as definition of grade of disbelief. Alternatively, one may take grade of disbelief as primitive, and think of the connection as assumption about the causal relationship between grades of disbelief and the revision of beliefs. More on this below.

While probabilistic degrees of belief are measured on an absolute scale, rank-theoretic grades of disbelief are at best measured on a ratio scale. Therefore, we need to fix a unit for them. We need to do the same when we want to report the amount of money in your bank account, which is measured on a ratio scale, or the temperature in Vienna, which is measured on an interval scale. To say that this amount of money, or that temperature, equals 17 is not saying anything if we do not also specify a unit such as Euros or degrees of Celsius. Information sources that are deemed mp-reliable are used to specify the unit in which grades of disbelief are measured. Furthermore, to guarantee that these units can be added and compared, just as we can add and compare sums of Euros and degrees of Celsius, we need to make sure that these information sources are not only deemed to be mp-reliable, but also independent in the relevant sense.

The information sources whose reports we humans typically cite as reasons are rarely deemed independent or mp-reliable. The testimony of someone we consider an expert will make us stop disbelieving something immediately, while the sermons of a dozen of other people will not. And the last-born’s telling a parent that there is no wine left after the first-born has already confessed to drinking it will not make much of a difference to the parent’s grade of disbelief. This is no argument against the usefulness of this notion, though – and usefulness is what matters. Information sources that are deemed independent and mp-reliable are a theoretical construct. They are the smallest units such that the reliability we deem any possible information source to possess can be expressed as a multiple of them.
5.1. THE CONSISTENCY ARGUMENT

Of course, it is an assumption that there are mp-reliable information sources. If the agent can receive information from at most finitely many mp-reliable sources, this assumption implies that finite grades of disbelief are natural numbers.

Finally, the reason our connection is stated in terms of a counterfactual is that, in fact, the agent may never encounter these information sources.

To directly receive information may mean that the agent indirectly receives further information. If she directly receives the information A and, as a result, comes to believe A, she should also believe $A \cup B$ (provided B is in her language). Furthermore, in this case she should conditionally believe A given $A \cup B$. Thus, to directly receive information may mean that the agent indirectly receives further information that may be conditional or non-conditional.

To directly receive the information A n times in a way she deems independent and mp-reliable may mean the agent indirectly also receives further information as many times. It is not to so receive further information m times, for some $m \neq n$. The reason is that n is the number of independent and mp-reliable information sources saying A (or, in light of theorem 6 below, the reliability the agent deems one information source to possess that is positively reliable, but not minimally so). This number is the same for any further information the agent may take these sources to indirectly provide by saying A.

If one weatherperson tells Ida that the temperature at noon will be above 30 degrees Celsius, she indirectly also provides her with the information that the temperature at noon will be above 30 or above 35 degrees Celsius. However, it is still the one weatherperson who does so. Therefore, the deemed reliability with which Ida indirectly gets the second piece of information is exactly the same as the deemed reliability with which she directly gets the first piece of information. The difference between the two pieces of information is a difference, not in deemed reliability, but in content.

Deemed independence and mp-reliability of information sources are primitive notions. We use them together with the qualitative notion of belief (in the wide sense) to formulate a connection to the quantitative notion of grade of disbelief in terms of counterfactuals: bracketing issues surrounding the conditional analysis of dispositions (which I am not presupposing), quantitative grades of disbelief are, or are the causal basis for, dispositions to hold qualitative beliefs.

This connection allows us to answer the question why the agent’s quantitative grades of disbelief should obey the axioms of ranking theory. They should do so because doing so is a necessary means to attaining her end of holding sufficiently informative and true beliefs – now, as well as in response to every finite sequence of finite experiences of finite reliability she deems possible (defined below).
Theorem 5 An ideal doxastic agent’s beliefs are consistent and deductively closed in the finite / countable / complete sense – and they would remain so in response to any finite sequence of finite experiences of finite reliability she deems possible – if, and only if, her grades of disbelief are a finitely / countably / completely minimitive ranking function that would be updated according to the principle of categorical matching in response to any finite experience of finite reliability she deems possible.

PROOF: See the appendix to chapter 5. The proofs in Huber (2007b) contain mistakes, and the theorems, especially those in section 7, rest on several unstated assumptions.

There are at least two options to answer the question why quantitative grades of conditional disbelief should obey the axioms and update rule of ranking theory.

The first option is to define quantitative grades of conditional disbelief in the way we have defined conditional ranks – namely, as differences of quantitative grades of disbelief – and to define qualitative conditional disbelief as positive grade of conditional disbelief. Thus, on this option, qualitative conditional belief is a conceptual epiphenomen of quantitative grade of disbelief. This option is particularly attractive, though not mandatory, if we think of our connection as definition of grade of disbelief. What is left to do, on this option, is to answer the question why grades of disbelief should be updated according to the update rule.

To present one way of proceeding, recall how updating is supposed to work according to the update rule. First, the agent has to identify all propositional contents that are directly affected by the experience she undergoes between times t and t'. Let \mathcal{D} be the set of these. Second, she has to form the unique partition $\mathcal{P} = \{\bigcap \pm D : D \in \mathcal{D}\}$, where $\pm D$ is D or $\overline{D} = W \setminus D$. The cells $E_i = \bigcap \pm D$ are the logically strongest propositions that are directly affected by the experience, where the indices i are taken from some index set I. Third, she has to organize her beliefs on this partition in a consistent manner by determining the grades z_i by which the ranks of the cells E_i are deteriorated relative to the “best” cells, i.e. the cells whose ranks are deteriorated the least. This has to happen relative to the scale of her previous ranking function so that the meaning of the numbers remains the same. Fourth, we require the agent to normalize the grades z_i by which the ranks of the cells E_i change, although this step is optional: $z'_i = z_i - \min_{k \in I} \{z_k\}$.

This procedure turns the experiential causes that directly affect the agent’s doxastic state into reasons of hers. These reasons of hers determine a unique ranking function on the unique smallest algebra that is generated by the partition \mathcal{P}. The task of the update rule is to specify the agent’s new ranks for the remaining
propositions in her algebra \mathcal{A}.

Call an experience that directly affects only finitely many propositions finite; one that directly affects only a single proposition (and its negation) simple; one whose input parameters are finite of finite reliability; one whose input parameters are only 1s and 0s minimal; and say the agent deems an experience possible if, and only if, at time t, before undergoing the experience that takes place between t and t', she assigns a finite rank to all logically strongest propositions that are directly affected by this experience. The update rule is also defined for experiences that the agent deems possible and that directly affect infinitely many propositions, but we will restrict ourselves to finite experiences of finite reliability the agent deems possible.

According to the update rule, each finite experience the agent deems possible has the same effect as a finite sequence of simple experiences all of which the agent deems possible, and whose order does not matter. Furthermore, each simple experience of finite reliability the agent deems possible has the same effect as a finite sequence of simple and minimal experiences the agent deems possible.

Let us state these claims more precisely in the following theorem.

Theorem 6 Let $\varrho : \mathcal{A} \to \mathbb{N} \cup \{\infty\}$ be a ranking function assigning finite ranks to all cells of the partitions $\{E_1, \ldots, E_n\} \subseteq \mathcal{A}$ and $\{E, \overline{E}\} \subseteq \mathcal{A}$. Let m, z, z_1, \ldots, z_n be numbers from $\mathbb{N} \cup \{\infty\}$ such that $\min\{z_1, \ldots, z_n\}$ and z are finite, and $z \geq m$. For $i = 1, \ldots, n$ and $j = 1, \ldots, z - m$, let $\varrho^i = \varrho_{E_i \uparrow z, E_i \uparrow \min\{z_1, \ldots, z_m\}}^{-1}$ and $\varrho[j] = \varrho_{E \uparrow z, \overline{E} \uparrow 0}^{j-1}$, where $\varrho^0 = \varrho^{[0]} = \varrho$. Then: $\varrho^n = \varrho_{E_1 \uparrow z_1, \ldots, E_n \uparrow z_n}$ and $\varrho^{[z-m]} = \varrho_{E \uparrow z, \overline{E} \uparrow m}$.

PROOF: See the appendix to chapter 5. Q.E.D.

As mentioned in section 4.2, the input parameters of Field conditionalization in probability theory can be interpreted as degrees of incremental confirmation. In contrast to this, the input parameters of Shenoy conditionalization cannot, in general, be interpreted as grades of confirmation. Theorem 6 mitigates this lack of conceptual economy. According to the update rule, any finite experience the agent deems possible has the same effect as a finite sequence of simple experiences the agent deems possible. The input parameters of these simple experiences can be interpreted as grades of confirmation.

Theorem 6 implies that any finite experience of finite reliability the agent deems possible amounts to a finite sequence of simple and minimal experiences the agent deems possible. This means we can identify any finite sequence of such experiences with a finite sequence of simple and minimal experiences the agent deems possible.
Simple and minimal experiences are the experiences the agent undergoes when she receives information from a source she deems independent and mp-reliable. If she receives information from such a source, her grade of disbelief for any proposition changes by at most one unit – a feature we use in the proof of theorem 5. So does the difference between her grades of non-conditional disbelief for any two propositions. We use this feature in the proof of theorem 7.

To motivate why the agent should revise her grades of disbelief according to the update rule on the first option, note that it turns each old ranking function and each experience she deems possible into precisely one new ranking function. Spohn (2012: 86) shows that for each old ranking function that is regular, and each new ranking function that can be obtained from the old one by a finite experience, there are a unique smallest experiential partition and unique input parameters such that the new ranking function results from the old one and said experiential input. This means the output is unique, and the experiential input is so as well. (It is also true that each new regular ranking function can be obtained from each old ranking function that is regular by some – possibly infinite – experience of finite reliability the agent deems possible, but this is less relevant for present purposes.)

What is also unique is the old ranking function: for each new ranking function and each finite experience of finite reliability there is a unique old ranking function such that the new ranking function results from the old one and said experience. This is obvious from theorem 6. First, we replace the finite experience of finite reliability with a finite sequence of simple and minimal experiences that has the same effect. Then we take the new ranking function and feed it as experiential input the “reversal” of the finite sequence of simple and minimal experiences. The reversal switches 0 and 1 and reverses the order. In a certain sense, then, when it transforms the old ranking function into the new one, the update rule does not add any extra ingredients other than those provided by the experiential input. The changes required by the update rule are so minimal that one is always able to recover the old ranking function from the new one and the experiential input.

The update rule of ranking theory is not the only update rule with this feature, but the latter points us into the direction of one. The agent may want to make only minimal changes and hold on to as many grades of conditional belief as possible. The update rule requires her to hold on to her grades of disbelief conditional on each cell of the experiential partition. By doing so the agent holds on to, not only her grades of disbelief conditional on each cell \(E_k \) in \(\mathcal{P} \), but also her grades of disbelief conditional on any subset of any such cell that she deems possible:

\[
\varrho_{E_i \rightarrow n_i} (\cdot \mid F) = \varrho (\cdot \mid F) \text{ for every } F \in \mathcal{A} \text{ such that } \varrho (F) < \infty \text{ and } F \subseteq E_k \text{ for some } E_k \text{ in } \mathcal{P} \text{ (compare Kern-Isberner 2004’s “principle of conditional preservation”).}
\]
Call an \(F \) such that \(\varrho_{E \rightarrow n_i} (\cdot | F) = \varrho (\cdot | F) \) a condition that remains unaffected. If we restrict ourselves to experiences the agent deems possible, there is no update rule that satisfies the principle of categorical matching and, in any application, leaves unaffected a proper super set of the conditions that are left unaffected by the update rule of ranking theory. In other words, the update rule has the agent revise her beliefs by, in one sense, not ever making unnecessary changes.

This gives us the following statement.

An ideal doxastic agent’s beliefs are consistent and deductively closed in the finite / countable / complete sense, and they would remain so in response to any finite sequence of finite experiences of finite reliability she deems possible – and they would be revised without making unnecessary changes in any such response – if, and only if, her grades of disbelief are a finitely / countably / completely minimitive ranking function that would be updated according to the update rule in response to any finite experience of finite reliability she deems possible.

5.2 The consistency argument continued

The agent may, or may not, have the end of revising her beliefs without, in one sense, ever making unnecessary changes. Even if she does, this end has nothing to do with the end of holding true and sufficiently informative beliefs that we are assuming her to have. Indeed, this end cannot even be formulated in terms of qualitative belief. This brings us to the second option.

The second option is to take qualitative conditional belief to be conceptually (and maybe also causally) prior to, rather than a conceptual epiphenomenon of, quantitative grade of conditional disbelief. This option is less parsimonious in its ontology. In this regard it is more naturally paired with the interpretation of our connection as assumption about the causal relationship between grades of disbelief and the revision of beliefs, rather than as definition of grade of disbelief. However, as with the first option, this pairing is not mandatory.

To say how, on this second option, quantitative grades of conditional disbelief should behave with respect to an end that is formulated in terms of qualitative, non-conditional belief requires us, among other things, to establish a connection between conditional beliefs and grades of conditional disbelief. In addition, we need to make assumptions about the way the latter interact with non-conditional information. The assumptions we make, (ii-iii), are quantitative derivatives of the conditional theory of conditional belief stated below. They allow us to connect quantitative grades of conditional disbelief to qualitative, non-conditional belief.
First, grades of conditional disbelief are connected to conditional beliefs in the way grades of disbelief are connected to beliefs. Second, grades of conditional disbelief are \textit{robust} with respect to their condition, at least if the agent’s beliefs are consistent and deductively closed, because conditional beliefs are robust in this way. Third, a conditional grade of disbelief in A given C would increase if the agent did not conditionally disbelieve \overline{A} given C, she received information logically implying $C \cap \overline{A}$, and her non-conditional beliefs were consistent and deductively closed. The reason is that believing $C \cap \overline{A}$ requires conditionally disbelieving A given C, and not disbelieving $C \cap \overline{A}$ requires not conditionally believing A given C. More precisely,

an agent’s grade of conditional disbelief for a proposition A given a proposition C equals r if, and only if,

(i) r is the smallest number n such that she would not conditionally disbelieve A given C if she received the conditional information A given C from n sources she deemed independent and mp-reliable about A given C, and this was all that directly affected her doxastic state;

(ii) r would not alter if her non-conditional beliefs were consistent and deductively closed, she received the information C – but no logically stronger information – from any number of sources, and this was all that directly affected her doxastic state; and

(iii) r would increase by i if (a) she did not conditionally disbelieve \overline{A} given C, (b) she received information logically implying $C \cap \overline{A}$ from i sources she deemed independent and mp-reliable about this information, this was all that directly affected her doxastic state, and (c) her non-conditional beliefs were consistent and deductively closed; r would not decrease if (b-c) held.

As before, one of several ways to think of this connection is as definition of quantitative grade of conditional disbelief. An alternative is to take grade of conditional disbelief as primitive, and think of the connection as assumption about the causal relationship between grades of conditional disbelief and the revision of conditional beliefs. Both interpretations explain why we can sometimes measure an agent’s grade of (conditional) disbelief by her revision behavior (Hild & Spohn 2008) – a behavior which itself can at best be inferred (or introspected, if one considers oneself).
5.2. THE CONSISTENCY ARGUMENT CONTINUED

In Bayesianism an agent’s (fair) betting ratios can sometimes also be used to measure her probabilistic degrees of belief, but not to define them (Eriksson & Hájek 2007). There is a gap between (fair) betting ratios and probabilistic degrees of belief because there is a gap between believing a proposition to a certain degree, and acting upon this degree of belief (or evaluating as fair on its basis). This is different in our case. Bracketing issues surrounding the conditional analysis of dispositions (which I still do not presuppose), the reason is that our connections render grades of (conditional) disbelief dispositions, or the causal bases of these dispositions, to revise the very (conditional) beliefs they are grades of.

To directly receive conditional information may mean that the agent indirectly receives further information. If she directly receives the conditional information A given C and, as a result, comes to conditionally believe A given C, she should also conditionally believe $A \cup B$ given C (provided B is in her language). Furthermore, in this case she should also believe $\overline{C} \cup A$. Thus, to directly receive conditional information may mean that the agent indirectly receives further information that may be conditional or non-conditional.

To directly receive the conditional information A given C n times in a way that the agent deems independent and mp-reliable may mean that she indirectly also receives further information as many times. It is not to so receive further information m times, for some $m \neq n$. If one weatherperson tells Ida that the temperature will be above 30 degrees Celsius if it does not rain, she indirectly also provides her with the information that the temperature will be above 30 or above 35 degrees Celsius if it does not rain. The deemed reliability with which Ida indirectly gets the second piece of information is exactly the same as the deemed reliability with which she directly gets the first piece of information: it is still the one weatherperson who provides the information. The difference between them is a difference, not in deemed reliability, but in conditional content.

The second option renders the difference formula a substantial requirement governing the relationship between grades of disbelief and grades of conditional disbelief. To justify this requirement – that is, to answer the question why the agent’s doxastic state should obey it – relative to an end that is formulated in terms of qualitative, non-conditional belief, we needed to make assumptions about how grades of conditional disbelief interact with non-conditional information. The assumptions we made, clauses (ii) and (iii), are quantitative derivatives of the following assumptions about conditional belief and its relationship to belief.

Here is the first assumption.

Let A and C be propositions from the agent’s set of opinions. If the
agent’s beliefs are consistent and deductively closed and she does not disbelieve C, she conditionally believes A given C if, and only if, she believes the material conditional C → A.

The first assumption explains why an agent’s beliefs should obey Stalnaker (1975)’s direct argument if she does not disbelieve the condition. For beliefs, the direct argument is the inference from a belief in the disjunction C ∪ A to a belief in the indicative conditional A if C. We assume the agent believes the indicative conditional A if C if, and only if, she conditionally believes A given C. According to the first assumption, if the agent’s beliefs are consistent and deductively closed (as they should be given her ends), and she does not disbelieve C, she conditionally believes A given C if, and only if, she believes the material conditional C → A. The latter she should believe if (and only if) she believes the disjunction C ∪ A.

Furthermore, the first assumption entails that an agent’s conditional beliefs should satisfy modus ponens. Suppose the agent believes C and conditionally believes A given C. Since her beliefs should be consistent, the agent should not also disbelieve C. If her beliefs are as they should be, the first assumption entails that she believes the material conditional C → A. Since her beliefs should be deductively closed, she should also believe A.

Finally, the first assumption entails that an agent should believe a material conditional if she holds the corresponding conditional belief. Suppose her beliefs are consistent and deductively closed, as they should be, and she conditionally believes A given C. If she does not disbelieve C, the first assumption entails she believes the material conditional C → A. If she disbelieves C, she should believe the material conditional C → A, as her beliefs should be deductively closed.

The last two consequences have a further consequence. We assume the agent to have the end, not only of presently holding true and sufficiently informative beliefs, but of holding such beliefs presently – and in response to every finite sequence of finite experiences of finite reliability she (presently) deems possible. This means that her conditional beliefs given any condition she deems possible must be conditionally consistent, as well as conditionally deductively closed (in the complete sense of the definition in the appendix to section 5).

To see this, suppose the agent’s conditional beliefs given some condition C she deems possible are not consistent. Her conditional beliefs should satisfy modus ponens. So, the beliefs she should hold in response to an experience that causes her to believe C, and to hold on to her conditional beliefs given C (this is possible given our second assumption below), are not consistent.
Suppose next the agent’s conditional beliefs given some condition \(C \) she deems possible are not deductively closed. This means there is a proposition \(A \) such that the conjunction of \(A \) and all propositions \(B \) the agent conditionally believes given \(C \) logically implies \(A \), but she does not conditionally believe \(A \) given \(C \). If she does not disbelieve \(C \), the first assumption entails that she believes the material conditionals \(C \rightarrow B \), for all propositions \(B \) she conditionally believes given \(C \), but not the material conditional \(C \rightarrow A \) – even though the latter follows logically from the former. So, her beliefs are not deductively closed. If she disbelieves \(C \), then it is the beliefs she should hold in response to an experience that causes her to give up her disbelief in \(C \), and to hold on to her conditional beliefs given \(C \) (again, this is possible given our second assumption below), that are not deductively closed.

This establishes that the agent’s beliefs should be consistent and deductively closed, as well as that her conditional beliefs should be conditionally consistent and conditionally deductively closed. As in the non-conditional case, part two of our conditional consistency requirement is a special case of conditional deductive closure.

Since we have already made use of it, it is time to state the *second assumption*.

Let \(A \) and \(C \) be propositions from the agent’s set of opinions. If the agent’s beliefs were consistent and deductively closed and she came to believe or suspend judgment about \(C \) – but no logically stronger proposition – and this was all that directly affected her doxastic state, her conditional opinion of \(A \) given \(C \) would not change.

Clause (ii) is a quantitative derivative of the second assumption. Like the first, it can be related to Jackson (1979; 1987)’s theory of conditionals (also adopted by Lewis 1986b: fn 6). On this theory, indicative conditionals have truth conditions, namely the truth conditions of the material conditional. When an agent asserts an indicative conditional, she expresses her belief in the corresponding material conditional. However, for the indicative conditional to be assertible for her, her belief in the material conditional has to be *robust* with respect to the antecedent.

In qualitative terms, the agent’s belief in the material conditional \(C \rightarrow A \) is robust if it would not be affected if she came to believe the antecedent \(C \). This is a diachronic or subjunctive notion of robustness. In quantitative terms, the agent’s degree of belief in the material conditional \(C \rightarrow A \) is robust if it is equal to her conditional degree of belief in the material conditional \(C \rightarrow A \) given \(C \). This is a (seemingly) synchronic notion of robustness. It becomes diachronic or subjunctive only if we presuppose the update rule of strict conditionalization.
(unless the relationship between conditional and non-conditional degrees of belief is as the conditional theory of conditional degree of belief below has it).

While Jackson and Lewis are concerned with the assertability of indicative conditionals, rather than the nature of conditional belief, both agree (Lewis 1986c: 154) that it is the diachronic or subjunctive notion of robustness that matters. Our second assumption is an alternative formulation of this notion. It is formulated for conditional opinion rather than belief in the corresponding material conditional. (Here a change in conditional opinion is any change between conditional belief, conditional disbelief, and conditional suspension of judgment.)

Referring to Lewis (1986c: 155), Edgington (1995: 301f) discusses a problem for robustness that van Fraassen (1980: 503) attributes to Richmond Thomason. It concerns the difference between synchronically supposing and diachronically updating. We can formulate this problem as a challenge to our second assumption and illustrate it by the following example. Ida holds the conditional belief that, if the wine she is enjoying is from a vineyard other than the one mentioned on the label, \(p \), then she will never come to believe so. To express her conditional belief Ida asserts the indicative conditional ‘If \(p \), then I will never come to believe \(p \).’

Let us set aside the questionable value of examples. Let us grant Ida holds a conditional belief rather than a belief in a counterfactual. Let us assume Ida disbelieves the condition \(p \) (otherwise there is no challenge), but, in asserting the indicative conditional, does not merely want to express her disbelief in \(p \).

Suppose Ida later comes to believe \(p \). This is a change in a non-conditional belief of Ida’s whose propositional content is the condition \(p \) of Ida’s conditional belief, but which does not go beyond \(p \). According to our second assumption, Ida’s conditional belief does not change. Since her conditional beliefs should obey modus ponens, and she believes the way she should, Ida also believes that she will never come to believe \(p \). This, so the challenge, is highly implausible. It is much more plausible that Ida drops her conditional belief and adopts the belief that she has come to believe \(p \).

While eminently plausible, assuming that Ida does not merely come to believe \(p \), but, in doing so, also comes to believe that she has come to believe \(p \), renders the example powerless as a counterexample to our second assumption. For then Ida has come to believe \(p \) and that she has come to believe \(p \) (assuming her beliefs are closed under conjunction, as they should be). This is a propositional content that goes beyond \(p \). In this case it is compatible with our second assumption that Ida’s conditional belief changes. In fact, in this case Ida should give up her conditional belief according to the update rule.

Conversely, suppose Ida comes to believe \(p \), but, in doing so, does not also
come to believe that she has come to believe \(p \). This bizarre supposition gives us no reason to think that Ida’s conditional belief is affected. On the contrary, in this bizarre case we can expect that, in accordance with our second assumption, Ida holds on to her conditional belief and now also believes that she will never come to believe \(p \).

I conclude that the second assumption meets the challenge from Thomason conditionals, which is Spohn (2012: 185ff)’s only reason for rejecting a cousin of the conditional theory of conditional belief. The same response applies to Weirich (1983)’s first example (even if we grant that there is a proposition which an agent – who is certain of what she is certain – deems possible while being certain that she will be never be certain of this proposition). Similarly for Weirich (1983: 89)’s second example which additionally conflates causal with doxastic independence (by Weirich 1983: 91’s own lights, as probabilistic dependence is symmetric). Adjusted to the present context, Weirich (1983: 91)’s third example involves a conditional belief about a conditional belief. I do not see how it can be construed as challenge for the conditional theory of conditional belief.

Finally, there seems to be a third assumption.

Let \(A \) and \(C \) be propositions from the agent’s set of opinions. If the agent’s beliefs are consistent and deductively closed and she believes a proposition logically implying \(C \cap \overline{A} \), she conditionally disbelieves \(A \) given \(C \). If her beliefs are consistent and deductively closed and she does not disbelieve a proposition logically implying \(C \cap \overline{A} \), she does not conditionally believe \(A \) given \(C \).

Clause (iii) is a quantitative derivative of the third assumption (formulated as a counterfactual, since, in fact, the agent may not receive said information). The latter is a consequence of the first assumption. Suppose the agent’s beliefs are consistent and deductively closed. If she believes a proposition logically implying \(C \cap \overline{A} \), she does not disbelieve \(C \), and believes \(C \rightarrow \overline{A} \). Our first assumption implies she conditionally disbelieves \(A \) given \(C \). If there is a proposition logically implying \(C \land \overline{A} \) that she does not disbelieve, she does not disbelieve \(C \) and does not believe \(C \rightarrow \overline{A} \). Our first assumption implies she does not conditionally believe \(A \) given \(C \).

We assume the agent’s assertion of an indicative conditional to express her conditional belief. Given this assumption, Jackson’s theory suggests that she holds a conditional belief if, and only if, she holds a robust belief in the corresponding material conditional. This motivates the conditional theory of conditional belief.
An agent conditionally believes a proposition \(A \) given a proposition \(C \) if, and only if,

(1) she does not disbelieve the condition \(C \) and believes the material conditional \(C \rightarrow A \),

or

(2) she disbelieves the condition \(C \), and she would (still) believe the material conditional \(C \rightarrow A \) (even) if she came to believe or suspend judgment about \(C \) – but no logically stronger proposition – and this was all that directly affected her doxastic state.

The conditional theory of conditional belief validates the first assumption. If the agent does not disbelieve \(C \) and her beliefs are consistent and deductively closed, she conditionally believes \(A \) given \(C \) if, and only if, she believes \(C \rightarrow A \).

It also validates the second assumption. Assume the agent holds a conditional belief in \(A \) given \(C \), and she initially disbelieves \(C \). Suppose she came to believe or suspend judgment about \(C \) – but no logically stronger proposition – and this was all that directly affected her doxastic state, and her beliefs were consistent and deductively closed. Then she would not disbelieve \(C \), and she would (still) believe \(C \rightarrow A \) because of (2). (1) tells us this means she would conditionally believe \(A \) given \(C \). If she initially does not disbelieve \(C \) so that nothing directly affected her doxastic state, her conditional belief in \(A \) given \(C \) would not change because of our characterization of direct effects on the agent’s doxastic state.

The second assumption is also true for conditional disbelief and conditional suspension of judgment. This becomes clear by stating the corresponding theories. An agent conditionally disbelieves \(A \) given \(C \), and only if, she conditionally believes \(\neg A \) given \(C \). She conditionally suspends judgment about \(A \) given \(C \) if, and only if, (1) she does not disbelieve \(C \) and believes neither \(C \rightarrow A \) nor \(C \rightarrow \neg A \), or (2) she disbelieves \(C \) and would believe neither \(C \rightarrow A \) nor \(C \rightarrow \neg A \) if she came to believe or suspend judgment about \(C \) – but no logically stronger proposition – and this was all that directly affected her doxastic state.

The conditional theory of conditional belief suggests the following conditional theory of conditional degree of belief: an agent’s conditional degree of belief in \(A \) given \(C \) equals \(x \) if, and only if, she is certain of \(C \) and her degree of belief in \(C \rightarrow A \) equals \(x \), or she is not certain of \(C \) and her degree of belief in \(C \rightarrow A \) would equal \(x \) if she came to be certain of \(C \) – but no logically stronger proposition – and this was all that directly affected her doxastic state.
5.2. THE CONSISTENCY ARGUMENT CONTINUED

This theory renders the probabilistic ratio formula a substantial requirement governing the relationship between degrees of belief and conditional degrees of belief that is as much in need of justification as the Bayesian requirements of non-negativity, normalization, and additivity. In return conditional degree of belief is given the role it has: not as shorthand for a claim about the ratio of two degrees of belief, but as the central notion in the revision of the agent’s degrees of belief, just as conditional belief is the central notion in the revision of her beliefs.

Both theories can be interpreted as definitions, or as assumptions about the nature of conditional (degree of) belief and its (causal) relationship to (degree of) belief. The contrast between definition and assumption resembles Leitgeb (2017)’s distinction between elimination and reduction, except that assumptions can be of arbitrary form. Both theories also require the respective update rules of Bayesianism and ranking theory to be extended by the ratio and difference formula, respectively. Otherwise these update rules specify only new degrees of belief and grades of disbelief, but no new conditional degrees of belief and grades of conditional belief. Finally, neither theory implies that conditional (degree of) belief is a (degree of) non-conditional belief with a unique propositional content. Therefore, there is no threat from the triviality results by Gärdenfors (1986) and Lewis (1976; 1986b).

The conditional theory of conditional belief is compatible with there being propositions A and C among the agent’s opinions such that she disbelieves C, but deems it possible, and neither conditionally believes nor conditionally disbelieves nor conditionally suspends judgment about A given C. Furthermore, even if she has a conditional opinion of A given C, she may not have a grade of conditional disbelief for A given C. However, theorem 5 implies that the agent should have a unique grade of disbelief for every proposition she has an opinion on. In addition, theorem 7 implies that the difference between her grade of disbelief for A ∩ C and her grade of disbelief for C should equal her grade of conditional disbelief for A given C, if this grade of conditional disbelief exists, and if she deems C possible. Since my interest lies in the question how the agent should organize and revise her beliefs, and the answer to this question is determined by these differences, I will assume the agent to have a conditional degree of disbelief for any proposition A given any proposition C she deems possible. With this assumption being made, we can finally answer the question why the agent’s grades of disbelief and grades of conditional disbelief should obey the axioms and update rule of ranking theory. They should do so because doing so is a necessary means to attaining her end of holding true and sufficiently informative beliefs – now, as well as in response to every finite sequence of finite experiences of finite reliability she deems possible.
Theorem 7 An ideal doxastic agent’s beliefs are consistent and deductively closed in the finite / countable / complete sense, and her conditional beliefs given any condition she deems possible are conditionally consistent and deductively closed given this condition in that sense – and both would remain so in response to any finite sequence of finite experiences of finite reliability she deems possible – if, and only if, her grades of disbelief are a finitely / countably / completely minimitive ranking function that are related to her grades of conditional disbelief given any condition she deems possible by the difference formula, and that would be updated according to the “extended” update rule in response to any finite experience of finite reliability she deems possible.

PROOF: See the appendix to chapter 5. Q.E.D.

5.3 The consistency argument completed

Before we move on I should mention that the argument for the update rule in Huber (2007b) is seriously flawed, as it rests on several unstated assumptions.

The reader may wonder what information the agent is receiving when she receives conditional information. In our connection between conditional beliefs and grades of conditional disbelief we have assumed conditional information to be a primitive. In section 6.2 we will characterize conditional information as non-conditional information whose propositional content depends on the agent’s conditional beliefs. If the agent conditionally disbelieves A given C, receiving the conditional information A given C is receiving the information $A \cap C$. If the agent does not conditionally disbelieve A given C, receiving the conditional information A given C is receiving the information $C \rightarrow A$. In accordance with clause (iii) of our connection between conditional beliefs and grades of conditional disbelief, what receiving the conditional information A given C is never is receiving the information $\overline{A} \cap C$.

While resting on several assumptions about the nature of conditional belief and its causal relationship to belief, the second option allows us to justify not only the axioms of ranking theory, but also the difference formula and the extended update rule. The closest the Bayesian has to offer in terms of accuracy dominance is the argument for strict conditionalization by Briggs & Pettigrew (2020). To the best of my beliefs nobody has yet provided such an argument for the ratio formula, or for Jeffrey or Field conditionalization.
The consistency argument by Briggs & Pettigrew (2020) is based on the expected accuracy argument by Greaves & Wallace (2006). So, it also suffers from Schoenfield (2017)’s criticism of the latter. Specifically, these arguments assume that the agent is infallible: if she conditionalizes on a proposition \(E \), then \(E \) is true. This is also true for Easwaran (2013)’s generalization of Greaves & Wallace (2006)’s argument, as noted by Schoenfield (2017: fn 16), as well as Schoenfield (2017)’s own argument for conditionalization (here the propositions the agent conditionalizes on are learning-propositions that, if conditionalized on, are true). The consistency argument does not assume the agent to be infallible: the information by which she revises her beliefs can be false.

Theorem 7 allows us to answer the question why an ideal doxastic agent should organize her beliefs and conditional beliefs at a given moment in time according to the axioms of ranking theory, as well as why she should revise these beliefs across time according to its update rule if she receives new information. She should do so for the following reason.

1. Intending, or willing, to believe in accordance with the norms of ranking theory is a means to attaining the end of believing in this way.

2. Believing in this way is a necessary and sufficient means to attaining the end of holding beliefs and conditional beliefs that are (conditionally) consistent and (conditionally) deductively closed, now and in response to any finite sequence of finite experiences of finite reliability the agent deems possible.

3. Holding such beliefs and conditional beliefs – now and in response to any such sequence of experiences – is a necessary means to attaining the end of having an opinion on as many propositions as she can, and of holding no false belief and as many true beliefs as she can – now and in response to any finite sequence of finite experiences of finite reliability she deems possible.

4. Ergo, to the extent that the ideal doxastic agent has this end – now and in response to any such sequence of experiences – she should obey the norms of ranking theory and intend, or will, to believe according to “the laws of belief.”

\(^1\)Building on work by Rescorla (forthcoming), Pettigrew (ms) attempts to do without assuming infallibility. Naturally, there are other assumptions. The accuracy dominance argument for strict conditionalization assumes that the agent revises her credences only if she becomes certain of one of several mutually exclusive propositions. If the credence functions the agent might have in the future are the ones she presently considers to be her possible future credence functions, the agent is additionally assumed to presently consider it impossible for this assumption to fail.
This argument, the *consistency argument*, provides a means-end justification for the thesis that an ideal doxastic agent’s beliefs and conditional beliefs should obey the static and dynamic rules of ranking theory. It is in the spirit of epistemic consequentialism (Percival 2002, Stalnaker 2002). It is not that we are telling Ida what and how to believe. *She* is the one who we hypothesize to have the end of having an opinion on as many propositions as she can, and of holding no false belief and as many true beliefs as she can – now and in response to any finite sequence of finite experiences of finite reliability she deems possible. We merely point out some of the means–end relationships that obtain in relation to this end.

Of course, if Ida does not have this end, our response will cut no ice. But that is besides the point: it is mistaking a hypothetical for a categorical imperative. (Brössel & Eder & Huber 2013 discuss the implications of this argument and its Bayesian role-model, the “non-pragmatic vindication of probabilism” by Joyce 1998; 2009, for considering doxastic rationality a form of instrumental rationality, and for means-end epistemology in general.)

Regularity requires the agent to assign a finite rank to every proposition that is consistent. The consistency argument does not vindicate regularity. Ida can assign an infinite rank to as many consistent propositions as she likes. As long as her grades of disbelief and conditional disbelief obey the axioms of ranking theory, she is guaranteed to have beliefs and conditional beliefs that are (conditionally) consistent and (conditionally) deductively closed.

Some agents aim at more than always – i.e., now and in response to every finite sequence of finite experiences of finite reliability they deem possible – having an opinion on as many propositions as they can, and of holding no false belief and as many true beliefs as they can. Some agents have a desire for content that goes beyond this cognitive end. As explained in section 2.2, informativeness or content is the cognitive end James (1896) has in mind when he tells us to not merely shun error, but to also believe the truth. Agents who have the end of believing the truth are curious. They ask questions and have the cognitive end of holding informative beliefs. There are different versions of this end (the same is true of the end of shunning error, as we shall see in chapter 8).

The minimal version of adding informativeness or content to the end of truth is the one adopted so far, namely to supplement the agent’s cognitive end of never holding a false belief with the clauses of always having an opinion on as many propositions as she can, and of always holding as many true beliefs as she can without taking an additional risk. A necessary means to attaining this end in addition to the end of never holding a false belief is for the agent’s beliefs to always be deductively closed in addition to being consistent.
5.3. THE CONSISTENCY ARGUMENT COMPLETED

A slightly stronger version results from adding, to the ends of shunning error and the minimal version of informativeness or content, that the agent has the end of avoiding missing out on any possible truth in the following sense: for every non-empty or consistent proposition A, if an unbounded number of information sources the agent deems independent and mp-reliable about A truthfully tell her that A, and no information source tells her anything that is inconsistent with A, then she will eventually believe A. In order to attain this end in every possible world, the agent has to make a little effort: she has to intend, or will, to obey a static norm which requires her to initially be open-minded or non-dogmatic so that every consistent disbelief is, in principle, subject to contraction. (As explained in section 6.1, these disbeliefs may include logical and conceptual falsehoods.) Given that her beliefs and conditional beliefs obey the axioms and update rule of ranking theory, a necessary and sufficient means to attaining this cognitive end is for her grades of disbelief to obey the axiom of regularity.

Of course, this is just the tip of the iceberg. An agent who never believes that things are as they appear to her, and always restricts her beliefs to how things seem to her, will never form a true belief about the external reality. Yet if this is what her curious nature desires, then she sometimes should believe that things are as they appear to her. She should do so not because appearance propositions provide a priori reasons, defeasible or otherwise, for propositions about reality, as Spohn (2012: ch. 16) suggests. As always, she should do so because doing so is a means to attaining some end she has. As we will see in chapter 10, depending on the nature of the information received, the agent may also have to start out with particularly bold beliefs in order to attain her end.

Furthermore, even if the agent believes that the weatherperson predicts rain, and not merely that it appears to her that she does, she still will not form any true beliefs about the weather if she does not also trust the weatherperson. If this is what her curious nature desires, though, then she has to take the further step and not merely trust her own senses, but also her fellow agents. And so the list continues until we reach agents who have the end of holding the most informative among all true beliefs. (The means to attaining a particularly simple version of this end are studied in Huber 2005b; 2008c; 2008d.)

This book is not the place to study the means to attaining all these ends. Suffice it to say that by taking the necessary means to attaining these richer ends, the agent automatically takes the necessary means to attaining other ends she may not have. For instance, by taking the necessary means to forming true beliefs about the external reality the agent takes the necessary means to forming false beliefs about the external reality. Such is the life of even an ideal agent: no risk, no fun.
The consistency argument establishes the thesis that an ideal doxastic agent ought to intend, or will, to obey the axioms and update rule of ranking theory. A feature of the latter is that it turns ranking functions and new information into ranking functions, and regular ranking functions and new information whose input parameters are finite (which they are, as we restrict ourselves to finite sequences of finite experience of finite reliability the agent deems possible) into regular ranking functions. This renders plain conditionalization useless for her, but allows me to state the result of this section one more time: an ideal doxastic agent who has the end of having an opinion on as many propositions as she can, of holding no false belief and as many true beliefs as she can – now and in response to any finite sequence of finite experiences of finite reliability she deems possible – as well as of avoiding missing out on any possible truth, such an ideal doxastic agent ought to intend, or will, to obey the static and dynamic rules of ranking theory by organizing her beliefs and conditional beliefs according to its axioms, and by revising her beliefs and conditional beliefs according to its update rule if she receives new information.

5.4 Hypothetical imperatives

Like Foot (1972), I do not believe in categorical imperatives (Kant 1902). Nor do I believe in objective intrinsic values – that is, intrinsic values that one objectively ought to desire. Needless to say, I believe that there are utterances of normative – that is, prescriptive or evaluative – claims whose grammatical form is categorical. Indeed, I will give an example of such a grammatically categorical imperative momentarily. What I do not believe is that there is any categorical deontic reality that is referred to by such grammatically categorical imperatives.

On the instrumentalist view adopted in this book and the second volume, all there is to rationality, or normativity, are means to ends. These means-end relations include being a contributing cause, as well as other, potentially non-deterministic causal relations that cannot be established by formal methods alone. They also include being logically equivalent and other logical relations that can be so established. The latter fact is one reason why formal methods are important for means-end philosophy.

Which ultimate ends we have is a factual matter, and I assume these to be our subjective intrinsic desires. Which actions or intentions to act are means to which ends is so as well. What is never a factual matter, on this view, is which ultimate ends one ought to have. In what follows I will sketch an argument for this view.
Some imperatives are hypothetical imperatives. Say, that Ida should (intend, or will, to) not smoke. The grammatical form of this imperative is categorical. It holds because not smoking is a means to attaining the end of not developing lung cancer, an end Ida is hypothesized to have. (While not essential to its holding, we can additionally assume that Ida has the end of avoiding developing lung cancer, that this end is more important to her than her end to enjoy a puff, and that these ends of hers do not conflict with any of her other ends.)

Now enter Occam’s razor, which is itself a norm, or imperative. Occam’s razor urges us to not multiply entities without necessity. In particular, it requires us to avoid additionally postulating the existence of a second kind of imperative, the category of categorical imperatives – unless we have to. We do not have to, though. Even if there were imperatives which we do not (yet) understand as hypothetical imperatives, it would not follow that we have to postulate a second category of categorical imperatives. Instead, we could always try harder until we understand these imperatives as hypothetical imperatives.

Occam’s razor in turn is not a categorical imperative, but a means to attaining the truth efficiently (Kelly 2007; Kelly & Genin & Lin 2016). And it just so happens that I have the end of always holding true and informative beliefs in the sense of the previous section, and to arrive at them efficiently.

Of course, things would be different if there was a sound argument to the effect that there are categorical imperatives. That, however, is not even possible, for the principles of logic – any logic, that is – are hypothetical imperatives (Huber 2017b), and no argument can do without some logical principle or other.

This is why I do not believe in categorical imperatives. To the extent that you also aim at believing the truth and at shunning error, and to do so efficiently, you ought to do so as well. Not because I tell you to, but because doing so is a means to attaining your ends.

Korsgaard (2008) argues that there can be no requirement to take the means to our ends unless there are also required ends. Let me briefly point out why her arguments do not undermine the above claim. First, all that Korsgaard (2008) shows is that there can be no categorical requirement to take some action unless there are also ends that are categorically required. She does not show that there can be no hypothetical requirement that is dependent on some end that itself is not required. Someone who denies the existence of categorical imperatives will expect and embrace this conclusion rather than conclude that there are ends that are categorically required: that there are only hypothetical imperatives, and no action that is categorically required, is what the denier of categorical imperatives – Korsgaard (2008)’s “empiricist” – has claimed all along!
Second, contrary to what Korsgaard (2008) claims, the empiricist can explain not only why the instrumental principle that one ought to take the means to one’s ends can motivate us (this is done through the ends a hypothetical imperative is dependent on). The empiricist can also explain how this principle can guide us. In particular, we can violate it in two ways: by having false or incomplete beliefs about what the means to our ends are, and about the consequences of taking these means; as well as by failing to intend, or will, to take the means to our ends. Which ends we have is not always transparent to us. Sometimes this is so because we make mistakes and have false beliefs about the consequences of realizing, i.e. taking the means to attaining, our ends. Sometimes this is so because we simply cannot foresee all the consequences of realizing our ends. This is true for ends that are means to other ends. It is also true for ultimate ends, as we may miss that the only way of realizing one ultimate end prevents us from realizing another ultimate end that is at least as important to us (if we can have more than one ultimate end).

As an aside, on the view adopted in this book, there is not one instrumental principle. Rather, each hypothetical imperative is its own requirement, while the statement of instrumentalism itself is no requirement at all. Korsgaard (2008)’s arguments concerning “the” instrumental principle are relevant, as they apply to all hypothetical imperatives. In discussing them, I will follow her terminology and write as if there was “the” instrumental principle: violating “it” is acting irrationally – i.e., having ends, but acting differently from the way one should be acting given that one has these ends.

Korsgaard (2008: 10f) thinks the empiricist must hold that there are no, and cannot be any, violations of the instrumental principle. She considers an agent whose ends are “shaped by [...] terror, idleness, shyness or depression” (Korsgaard 2008: 12) and thinks the empiricist cannot hold that this agent acts irrationally. However, the beliefs (about the pains and pleasures actually provided by taking the means to her ends) that this agent acts upon are simply false. It is precisely because this agent could or even does have other, true beliefs, yet fails to act upon these other, true beliefs, that we consider her to act irrationally when she lets depression stop her from working (she acts as if she believed the work was difficult when she could or even does have the other, true belief that it is not), shyness stop her from calling (she acts as if she believed calling was embarrassing when she could or even does have the other, true belief that it is not), idleness stop her from going downtown (she acts as if she believed going was inconvenient when she could or even does have the other, true belief that it is not), and terror stop her from riding the roller coaster (she acts as if she believed riding was dangerous when she could or even does have the other, true belief that it is not).
5.4. HYPOTHETICAL IMPERATIVES

To be sure, this is different for omniscient agents who are certain of all truths: they should take precisely these actions that they intend, or will, to take, unless they suffer from weakness of will. Ideal agents intend, or will, to take precisely these actions that they do take. So, ideal agents who are omniscient and do not suffer from weakness of will can, indeed, not violate the instrumental principle. Nor can such agents be guided by the instrumental principle. However, this is as it should be. Ideal agents who are omniscient and do not suffer from weakness of will do exactly what they should do. They have no need for any guidance.

Finally, according to Korsgaard (2008: 6f), for the empiricist, the Ought in the instrumental principle is derived from the Is of having an end. This supposedly undermines the empiricist position, for, as Hume (1739) alleges, one cannot infer an Ought from an Is (for a logical study of the is-ought problem see Schurz 1997). While this may be a problem for the empiricist, it is not for the instrumentalist. The latter holds that the Ought is not derived from, but dependent on the Is of having an end. Furthermore, this end-dependent Ought is not merely derived from, but consists in the Is of the obtaining of a means-end relationship: one ought to take an action given that one has an end if, and only if, taking this action is a means to attaining this end.

Understanding norms as hypothetical imperatives allows us to explain why norms have normative force. They have such force because, ultimately, they are dependent on ultimate ends – i.e., subjective intrinsic desires. Now, desires have force, and, in general, so do means-end relationships (and beliefs about them). These two forces combine to the normative force of a hypothetical imperative.

In the purely theoretical domain of epistemology, taking the means to one’s cognitive ends can come in conflict only with taking the means to one’s other cognitive ends. This is so because one never leaves one’s internal reality or mind. Outside the purely theoretical arena, where your taking the means to your ends may come in conflict with my taking the means to my ends, things become more difficult – but not different: there still are no required means without some desired ends. In contrast to this, we presumably need to postulate the existence of a special authority or deity or of moral facts or real virtues or objective intrinsic values or mind-independent duties or other ontologically problematic categories in order to explain how categorical imperatives can have normative force.

Which hypothetical imperatives hold, and which ends they are dependent on, is not, in general, an a priori matter. First, it sometimes is an empirical question which ends we happen to have. I might acquire the end of developing lung cancer (if, say, I was facing an even more painful death), I just do not to have it currently. To me this might be a priori, but to you it is not. Indeed, sometimes it may not
even be a priori to oneself what one’s current non-ultimate ends are. Second, it
sometimes is an empirical question which means-end relationships obtain. It is
an a posteriori discovery that not smoking is a non-deterministic, causal means
to avoiding developing lung cancer. In contrast to this, categorical imperatives
presumably do not depend on empirical matters that can be discovered only a
posteriori (by senses that provide information about the physical reality; on the
individuation of senses see Matthen 2015). This seems to be the reason for Carnap
(1963; 1968) to postulate a cognitive faculty of “rational insight” or “intuitive
judgment” that provides a priori access to categorical imperatives.

Unfortunately, philosophical problems are not solved by merely postulating
solutions to them, no matter how many times these are called “rational.” Doing so
is not engaging with a problem, it is giving up without admitting it. Carnap (1963;
1968) – despite his earlier empiricist confessions (Carnap & Hahn & Neurath
1929) – does just that when he postulates said super-empirical faculty (Huber
2017). (Brössel & Huber 2015 show that the “deus ex machina strategy” of merely
postulating solutions can also be found in contemporary philosophy.)

In the way they are understood in this book, the axioms and update rule of
ranking theory are hypothetical imperatives that govern how an ideal doxastic
agent ought to organize her beliefs and conditional beliefs at a given moment in
time, and how she ought to revise these beliefs if she receives new information.
These imperatives are dependent on the cognitive end of having an opinion on as
many propositions as she can, of holding no false belief and as many true beliefs
as she can – now and in response to any finite sequence of finite experiences of
finite reliability she deems possible – as well as of avoiding missing out on any
possible truth.

For the time being the view I have takes the following simple form (it will
become more complicated in the next section):

\[\text{O}_{E_a} \left(I \left(B \left(A \right) \right) \right) \text{ if, and only if, } B_{a} \left(A \right) \text{ – and, so (I assume), } I_{a} \left(B \left(A \right) \right) \text{ – is a means to attaining } E_a. \]

\(a \) is the ideal doxastic agent. The obligation \(\text{O}_{E_a} \) is addressing her, and dependent
on her cognitive ends \(E_a \). \(A \) is a proposition she understands. \(B \) is the cognitive
action of believing, and \(I \) is intending, or willing, to do what is within its scope.

Which ultimate cognitive ends an agent other than oneself has is an empirical
question, or a matter of stipulation if we consider how she should believe if she had
certain cognitive ends. The same is true for what and how she actually believes.
Which means-end relations obtain between her believing in a certain way and her
attaining certain cognitive ends sometimes is an a priori matter, if theorem proving
is. (I do not assume that theorem proving is an a priori matter, and nothing in this book depends on whether means-end relations can ever be established a priori.) Whether this is also true for the mere intention to believe in a certain way depends on whether it is a priori that intending to believe in a certain way is necessary for believing in this way. (Again, I do not assume so. What I assume is that the intention to take an action is a means to taking this action, without assuming much about the nature of this means-end relation.) However, when the means-end relation can be so established, it is by argument – not intuition.

The consistency argument is one example of how to justify a system of norms relative to a cognitive end by establishing a means-end relationship between the actions the norms require the ideal doxastic agent to intend, or will, to take and the satisfaction of the end these norms are dependent on. Classical logic, non-monotonic logic, and the probability calculus provide three further examples.

Interpreted as a system of norms for making inferences, classical logic can be justified relative to the cognitive end of inferring in a way that is truth-preserving with logical necessity: Ida’s inferences attain this end if, and only if, they obey the norms of classical logic. The significance of the soundness and completeness theorems for classical logic lies in establishing this means-end relationship. The significance of Gödel (1931)’s incompleteness theorems lies in establishing that, with mathematical necessity, Ida misses out regarding her end of holding only true and informative beliefs if she widens her interests and becomes curious about arithmetical questions (and she believes an answer to an arithmetical question if, and only if, it is derivable in Peano arithmetic). For either not every statement of the language of Peano arithmetic that is provable in Peano arithmetic is true – then Ida misses out by not holding only true beliefs; or not every true statement of the language of Peano arithmetic is provable in Peano arithmetic – then Ida misses out by not holding as many true beliefs as possible without taking an additional risk.

Interpreted as a system of norms for making inferences, non-monotonic logic (Kraus & Lehmann & Magidor 1990) can be justified relative to the cognitive end of inferring in a way that is normally truth-preserving: all and only those inferences that obey these rules are such that their conclusion is true in all of the most normal possible worlds in which all of their premises are true.

Classical and non-monotonic logic illustrate that different cognitive ends give rise to different systems of norms for the same cognitive action, viz. inferring. The probability calculus illustrates that not all cognitive ends are meaningful for all cognitive actions. Bayesians study degrees of belief – or rather: degrees of certainty – and the cognitive end of truth or truth-preservation is not meaningful
for these. A different one is, though.

Interpreted as a system of norms for organizing degrees of belief at a given moment in time, the probability calculus can be justified relative to the cognitive end of avoiding *accuracy domination* (Joyce 1998; 2009): provided accuracy is measured in a certain way, all and only those degree of belief functions that obey these norms are such that it is not the case that they are accuracy dominated (in the sense that there exists an alternative degree of belief function that is at least as accurate in all possible worlds, and more accurate in at least one).

These examples illustrate doxastic or cognitive consequentialism according to which doxastic or cognitive rationality is a species of instrumental rationality. If we supplement this view with the explicit denial of the existence of objective intrinsic values or real virtues or facts of rationality or mind-independent duties, so that there is nothing objectively wrong or right about what ultimate ends Ida happens to have, we arrive at the position adopted in this book: instrumentalism.

Some might say: “But surely Ida ought to prefer knowledge over mere true belief, and true belief over false belief.” To those I say: Ida’s mental state is her mental state, and like everybody else you have no say in what ultimate cognitive ends she ought to have. It is one thing for most or even all agents to have some ultimate end, and another thing for an ultimate end to be of objective value.

Ida has recently lost a friend. The investigations into the latter’s death provide her with the opportunity to learn if her friend ever betrayed her. Ida decides to ignore this piece of information, and to continue enjoying the fond memories she has of her friend rather than be potentially negatively surprised. Since her friend lived an otherwise isolated life there is no occasion for Ida to ever act on the basis of any belief she has, or does not have, about her friend. Some might say: “In ignoring this piece of information Ida is acting in a way that is prudentially rational, since facing the news could hurt her; but she is still acting in a way that is epistemically irrational.” To those I say: who gets to decide if prudential rationality trumps epistemic rationality if the two come in conflict? To say that some all-things-considered form of rationality does is to postulate a solution that just is not there – *a deus ex machina* moving in mysterious ways only intuition can track – and thus give up without admitting it; to say that Ida does is to concede that it is her ultimate cognitive ends alone that matter.

Finally, some might say: “But surely Ida ought to be rational, and thus obey a categorical imperative.” To those I say: to be rational is to do what one ought to do. So, to say that one ought to be rational is to say that one ought to do what one ought to do. Like the statement of instrumentalism, this is not an imperative – let alone a categorical one. Unlike the former, this statement is even void of content.
5.5 Conditional obligation and conditional belief

Contrary to what Greenspan (1975: 271) suggests, hypothetical imperatives are not, in general, conditional obligations (nor are the latter true if, and only if, their former counterparts are expressed successfully, as Niiniluoto 1986: 117 suggests).

Consider the following sentence:

If Ida conditionally believes that Athens is the capital of Greece given that Bay tells her so, then Ida should conditionally believe that there is a capital of Greece given that Bay tells her that Athens is the capital of Greece.

It expresses both a hypothetical imperative and a conditional obligation and has the following logical structure:

$$O_{E_i}(B_a(A^\Downarrow \Updownarrow C) \Uparrow B_a(A \Updownarrow C))$$

The sense in which this sentence expresses a hypothetical imperative is that Ida should believe one thing given that she believes another thing because doing so is a means to attaining her end E_a. The sense in which it expresses a conditional obligation is that Ida should believe one thing if she believes another thing. Finally, the sense in which it involves conditional beliefs is that Ida ought to conditionally believe A^\Downarrow given C if she conditionally believes A given C. Here it is to be kept in mind that, on the conditional theory of conditional belief, a requirement on conditional beliefs is a requirement on non-conditional beliefs to align with the former in accordance with the difference formula (and, as always, that is the agent’s intention to believe that is in the scope of the requirement).

This sense of hypotheticality is the sense in which a means-end relationship can obtain only relative to some end: there are no required intentions to act without some desired ends. If an agent fails to believe that she has an end that she actually has, or if she fails to believe that a means-end relationship obtains that actually obtains, the agent may still intend to take the action that she incorrectly believes to be a means to attaining to what she incorrectly believes to be her end. In such cases the agent violates the instrumental principle according to which she ought to intend, or will, to take the means to her ends. What she does not violate is the different principle that one ought to intend, or will, to take what one believes to be the means to what one believes to be one’s ends.

If an agent has true and complete beliefs about all her ends and the obtaining means-end relationships, she may still fail to satisfy the instrumental principle by
failing to intend to take the means to her ends. Such failures occur in cases of weakness of will, which must not be confused with cases where the agent intends to take some action, yet fails to successfully carry out the action because of some external event that is not under her control. Ida always intends to pour wine in the glass without spilling any of it, but occasionally fails to do so. These latter cases do not constitute violations of the instrumental principle, as we have formulated the latter for intentions to take actions rather than actions. This includes cases where an agent intends to believe a proposition, but fails to actually believe it (say, by forgetting it; see Spohn 2017b on forgetting). In contrast to this, cases of weakness of will, or *akrasia*, do constitute violations of the instrumental principle.

The sense in which hypothetical imperatives are hypothetical is different from the sense in which conditional obligations are conditional, as well as the sense in which conditional beliefs are conditional. The latter two senses of conditionality are the same, though, and they are equal to the sense in which default conditionals are conditional. It is the sense in which ranking functions or, as Spohn (1988) termed them originally, *ordinal conditional functions* are conditional.

In a sense this sense of conditionality is characterized by the conditional logic VT (Lewis 1973a, Arló-Costa 2007). This is an impoverished sense, though, as some features of the conditionality of ranking functions are lost in the finiteness of the syntax of propositional modal logic. This is witnessed by the fact that there are different semantic notions that are characterized in this finite syntactic way by VT. However, for the purposes of this section it will do. (The limit assumption is such a feature that is lost in translating semantics into finitary syntax, as Lewis 1973a: 121 notes.)

A conditional obligation $O(\alpha | \gamma)$ holds at a possible world w from a non-empty set of possible worlds W in a (deontically interpreted) rank-theoretic model $\langle W, (r_w)_{w \in W}, \emptyset \rangle$ if, and only if, α is true at all possible worlds from W (i) in which γ is true and (ii) which are preferred most by the addressee’s preferences in w. The latter preferences are represented by a ranking function r_w with domain $\wp(W)$. One way to arrive at these ranking functions is to adopt the decision theory sketched in chapter 11. However, any other interpretation – such as Spohn (2017a; 2020)’s – does as well, as long as the axioms of ranking theory are satisfied. An ideal doxastic agent holds a conditional belief $B(\alpha | \gamma)$ at a possible world w from a non-empty set of possible worlds W in a (doxastically interpreted) rank-Theoretic model $\langle W, (R_w)_{w \in W}, \emptyset \rangle$ if, and only if, her ranking function in w conditionally believes $[\alpha]$ given $[\gamma]$, $R_w([\alpha] | [\gamma]) > 0$. For the time being we bracket how to deal with conditions $[\gamma]$ with infinite rank.
5.5. CONDITIONAL OBLIGATION AND CONDITIONAL BELIEF

The logic of conditional obligations is the logic of conditional beliefs is the logic of default conditionals is the conditional logic VT (Raidl 2018; 2019; see also Friedman & Halpern 2001 and Halpern 2003). Let \(> \) be a generic conditional in a propositional logic (see section 3.1) that may be embedded, but not iterated.

1. \(\alpha, \alpha \rightarrow \gamma \vdash \gamma \)
2. From \(\vdash \alpha \leftrightarrow \beta \) infer \(\vdash (\alpha > \gamma) \leftrightarrow (\beta > \gamma) \)
3. From \(\vdash \beta \rightarrow \gamma \) infer \(\vdash (\alpha > \beta) \rightarrow (\alpha > \gamma) \)
4. \(\vdash \alpha \) if \(\alpha \) is a truth-functional tautology
5. \(\vdash \alpha > \alpha \)
6. \(\vdash (\alpha > \beta) \land (\alpha > \gamma) \rightarrow (\alpha > (\beta \land \gamma)) \)
7. \(\vdash (\alpha > \gamma) \land (\beta > \gamma) \rightarrow ((\alpha \lor \beta) > \gamma) \)
8. \(\vdash (\alpha > \beta) \land (\beta > \alpha) \rightarrow ((\alpha > \gamma) \leftrightarrow (\beta > \gamma)) \)
9. \(\vdash (\alpha > \gamma) \land \neg (\alpha > \neg \beta) \rightarrow ((\alpha \land \beta) > \gamma) \)
10. \(\vdash (\alpha > \bot) \rightarrow \neg \alpha \)

The logic of counterfactuals strengthens 10. to
10\(^{+}\). \(\vdash (\alpha > \gamma) \rightarrow (\alpha \rightarrow \gamma) \)

If \(> \) may be iterated, the following axiom has to be added.

11. \(\vdash \neg (\alpha > \bot) \rightarrow ((\alpha > \bot) > \bot) \)

As Raidl (2019) shows, these claims depend on the following truth condition for conditionals whose condition has infinite rank: if the rank of \(\llbracket \gamma \rrbracket \) at the world of evaluation is infinite, then \(\alpha > \gamma \) is true at this world if, and only if, \(\llbracket \alpha \rrbracket \subseteq \llbracket \gamma \rrbracket \).

While this is the truth condition adopted for all conditionals in this book and the second volume, it is not the only one. Modal logicians (Garson 2018) usually state truth conditions in terms of accessibility: a world \(v \) is accessible from a world \(w \) if, and only if, every proposition that contains \(v \) is assigned a finite rank by \(w \)'s ranking function. Traditionally, conditionals whose conditions are inaccessible at a world are said to be true at that world. Besides these two truth conditions, there are still others. The difference they make for conditional logic is meticulously studied by Raidl (2019).

If we adopt the traditional truth condition and 10. is weakened to
10^−. ⊬ ¬(⊤ > ⊥),

we get the normal conditional logic VN (also known as VP). This in turn is van Fraassen (1972)’s system CD of conditional deontic logic (Lewis 1973a: 132). If we adopt the traditional truth condition and 10. is dropped altogether, we get the basic conditional logic V that does not have a rank-theoretic semantics (see Raidl 2019 for details; if $>$ cannot be iterated, V corresponds to Lehmann & Magidor 1990’s system R and Pearl 1990’s system Z). On the traditional truth condition, 10. (and, thus, 10.−), as well as 11. if $>$ may be iterated, are recovered by requiring all ranking functions to be regular. For counterfactuals (see chapter 1), the traditional truth condition for counterfactuals with inaccessible conditions coincides with the one adopted in this book.

Thus, on both the traditional truth condition and the one adopted in this book, VT is the logic of non-iterated conditional belief supported by the consistency argument – with regularity being essential in case of the former, but not the latter. (If we allowed for iterated conditional beliefs, the logic would be $\text{VT}5$.) Spohn (2013) prefers an interpretation of conditional logic that replaces the notion of truth by the notion of non-conditional belief, and which results in Lewis (1973a)’s system VC being the logic of non-iterated conditional belief. (For a discussion of Spohn 2015 see Raidl 2019.)

On the truth condition of conditionals with inaccessible conditions adopted in this book, certainty and unconditional obligation cannot be defined in terms of conditional obligation and conditional belief, respectively (this is possible only if one has an additional modal operator such as absolute metaphysical necessity; see Raidl 2019 for details). On the traditional truth condition, this is possible.

An unconditional obligation – which is still a hypothetical imperative – is an obligation that holds conditional on every condition, even its negation:

$$\mathbf{O} (\alpha) \text{ if, and only if, } \mathbf{O} (\alpha \mid \neg \alpha)$$

This is one way of “boxing” – that is, of stripping a conditional modality of its conditionality. In chapter 4 we have come across a different way of boxing that turns conditional beliefs into non-conditional beliefs. A non-conditional belief is a belief the ideal doxastic agent holds – not conditional on every condition, let alone its negation, but: – conditional on the tautological proposition \top:

$$\mathbf{B} (\alpha) \text{ if, and only if, } \mathbf{B} (\alpha \mid \top)$$

If we box conditional beliefs in the first way, we arrive at certainty and its dual, deeming possible:
5.5. CONDITIONAL OBLIGATION AND CONDITIONAL BELIEF

\(C(\alpha) \) if, and only if, \(B(\alpha | \neg \alpha) \)

\(D(\alpha) \) if, and only if, \(\neg C(\neg \alpha) \)

Given these identifications – which, again, are possible on the traditional truth condition of conditionals with inaccessible conditions, but not the one adopted in this book – axioms 10\(^-\), 10., and 11., respectively, become:

\[\vdash C(\alpha) \rightarrow D(\alpha) \]

\[\vdash C(\alpha) \rightarrow \alpha \]

\[\vdash D(\alpha) \rightarrow C(D(\alpha)) \]

In concluding this section and chapter let me illustrate one way in which means-end philosophy differs from conceptual analysis and explication (Huber 2018: 47ff). Consider the principles of positive and negative introspection for non-conditional belief due to Hintikkaa (1961):

\[\vdash B(\alpha) \rightarrow B(B(\alpha)) \]

\[\vdash \neg B(\alpha) \rightarrow B(\neg B(\alpha)) \]

In an analysis of the concept **BELIEF** one will consider whether these principles are “intuitively plausible.” In an explication of this concept one will consider whether these principles form “subjectively plausible desiderata.” Finally, in experimental philosophy one will gather data about whether various populations use the word ‘belief’ in accordance with these principles under various conditions.

In contrast to this means-end philosophy asks which cognitive end an ideal doxastic agent attains if she obeys these principles. Among the ends we have considered so far, the most prominent one is to hold true and informative beliefs. If an ideal doxastic agent has an interest not only in the external world, but also in her own beliefs, then she attains this cognitive end only if she obeys the above two principles. For suppose an agent believes some proposition, yet fails to believe that she believes it. Then she misses out by not holding as many true beliefs as she can without taking an additional risk. Similarly if she does not believe some proposition, yet fails to believe that she does not believe it.

The above principles are instances of the following synchronic “reflection principle” for subjective ranking functions:

\[R(A | R(A) = n) = n \]

It implies that an ideal doxastic agent ought to be certain of what her own grades of disbelief are and is generalized in Spohn (2017b), building on Spohn (2012: ch. 9) and Hild (1998) and – for the probabilistic case – van Fraassen (1984; 1995).
5.6 Appendix: Proofs

Theorem 5 An ideal doxastic agent’s beliefs are consistent and deductively closed in the finite / countable / complete sense – and they would remain so in response to any finite sequence of finite experiences of finite reliability she deems possible – if, and only if, her grades of disbelief are a finitely / countably / completely minimitive ranking function that would be updated according to the principle of categorical matching in response to any finite experience of finite reliability she deems possible.

PROOF: Let ϱ be the agent’s grade of disbelief function, i.e. the function that summarizes her grades of disbelief for all propositions in the set of her opinions \mathcal{A}. The agent’s **belief set** \mathcal{B}_ϱ is the set of propositions with a positive grade of disbelief, $\mathcal{B}_\varrho = \{ A \in \mathcal{A} : \varrho(A) > 0 \}$.

$\mathcal{B} \subseteq \mathcal{A}$ is consistent in the finite / countable / complete sense if, and only if, for every finite / countable / arbitrary $\mathcal{B}^- \subseteq \mathcal{B}$: $\bigcap \mathcal{B}^- \neq \emptyset$. It is deductively closed in the finite / countable / complete sense if, and only if, for every finite / countable / arbitrary $\mathcal{B}^- \subseteq \mathcal{B}$ and all $A \in \mathcal{A}$: if $\bigcap \mathcal{B}^- \subseteq A$, then $A \in \mathcal{B}$.

For the direction from right to left suppose the agent’s grades of disbelief are a finitely / countably / completely minimitive ranking function that would be updated according to the principle of categorical matching in response to any finite experience of finite reliability she deems possible. Then all future grades of disbelief she might have in response to any such experience would be such a ranking function. Thus, her current belief set is consistent and deductively closed in the finite / countable / complete sense – and would remain so in response to any finite sequence of finite experiences of finite reliability she deems possible.

For the direction from left to right suppose first the agent’s grades of disbelief are not a function. As she has a grade of disbelief for every proposition, there are a proposition A and distinct m and n from the set of natural numbers extended by infinity such that her grade of disbelief for A equals m and n. Suppose she receives the information A from $\min \{m, n\}$ (which is finite) information sources she deems independent and mp-reliable. At this point she simultaneously would not disbelieve A and might disbelieve A. Therefore her belief set might not be deductively closed in the finite and, hence, countable and complete sense: it might contain \overline{A}, yet it would not contain the logical consequence \overline{A} of this belief.

Suppose next the agent’s grade of disbelief for the tautological proposition W is positive. Then her belief set contains \emptyset, which implies that it is not consistent in the finite and, hence, countable and complete sense.
Next suppose the agent’s grade of disbelief for the contradictory proposition \(\emptyset \) is finite (so that \(\{ \langle W, 0 \rangle, \langle \emptyset, \varrho(\emptyset) \rangle \} \) is a finite experience of finite reliability she deems possible). Suppose she receives the information \(\emptyset \) from \(\varrho(\emptyset) \) information sources she deems independent and mp-reliable. (If the agent uses the update rule of ranking theory, this requires us to widen the scope of the latter slightly, as \(\{ \emptyset, W \} \) is merely a set of mutually exclusive and jointly exhaustive propositions, but not a partition, all of whose cells are deemed possible.) At this point she would not disbelieve \(\emptyset \) anymore. Thus, her belief set would not contain \(W \), so would not be deductively closed in the finite and, hence, countable or complete sense.

Now suppose the agent’s grade of disbelief for a disjunction \(\bigcup \mathcal{B} \) of finitely / countably / arbitrarily many propositions is smaller than her grade of disbelief for each of them. Suppose she receives the information \(\bigcup \mathcal{B} \) from \(\varrho(\bigcup \mathcal{B}) \) (which is finite) information sources she deems independent and mp-reliable. At this point she would not disbelieve \(\bigcup \mathcal{B} \) anymore. However, she might still disbelieve each of the finitely / countably / arbitrarily many propositions \(B \) in \(\mathcal{B} \). This is so because each of these information sources would reduce her grade of disbelief for any of these propositions by at most one unit. So, her belief set might contain all of the finitely / countably / arbitrarily many propositions \(B \), for \(B \) in \(\mathcal{B} \), but it would not contain their conjunction \(\bigcup \mathcal{B} \). This means her belief set might not be deductively closed in the finite / countable / complete sense.

This time suppose the agent’s grade of disbelief for at least one, say \(B \), of finitely / countably / arbitrarily many propositions is smaller than her grade of disbelief for their disjunction. Suppose she receives the information \(B \) from \(\varrho(B) \) (which is finite) information sources she deems independent and mp-reliable. At this point she would not disbelieve \(B \) anymore. However, for the same reason as above, she might still disbelieve a disjunction with finitely / countably / arbitrarily many disjuncts one of which is \(B \). So, her belief set would not contain \(B \), but might contain a conjunction with finitely / countably / arbitrarily many conjuncts one of which is \(B \). Therefore, her belief set might not be deductively closed in the finite / countable / complete sense.

Finally, suppose the agent’s grades of disbelief are a finitely / countably / completely minimitive ranking function, and there exists a finite experience of finite reliability she deems possible in response to which she might not update her grades of disbelief according to the principle of categorical matching. That is, if she went through this experience, \(A \), then she might have grades of disbelief in response to it that are not a finitely / countably / completely minimitive ranking function, \(B: A \not\rightarrow B \).
CHAPTER 5. WHY SHOULD I?

The previous paragraphs imply that there is a continuation of this experience and her response to it in response to which she might not have beliefs that are consistent and deductively closed in the finite / countable / complete sense. That is, if she went through this experience, A, and had that response to it, B, and subsequently experienced said continuation, C, then she might not have beliefs that are consistent and deductively closed in the finite / countable / complete sense, D: $(A \land B \land C) \iff D$.

We assume that our counterfactuals do not backtrack, as well as that the present (B) is counterfactually independent of the future (C) in the presence of some or all of the past (A) (see Lewis 1979). Consequently, $A \iff B$ implies $(A \land C) \iff B$.

That is, the agent might have grades of disbelief in response to this experience that are not a finitely / countably / completely minimal function if she went through this experience and subsequently experienced said continuation.

Therefore, the agent might not have beliefs that are consistent and deductively closed in the finite / countable / complete sense if she had this experience and subsequently experienced said continuation, $(A \land C) \iff D$. This means there is a finite sequence of finite experiences of finite reliability the agent deems possible in response to which she might not have beliefs that are consistent and deductively closed in the finite / countable / complete sense.

Q.E.D.

Theorem 6 Let $\varrho : \mathcal{A} \to \mathbb{N} \cup \{\infty\}$ be a ranking function assigning finite ranks to all cells of the partitions $\{E_1, \ldots, E_n\} \subseteq \mathcal{A}$ and $\{\hat{E}, \bar{E}\} \subseteq \mathcal{A}$. Let m, z, z_1, \ldots, z_n be numbers from $\mathbb{N} \cup \{\infty\}$ such that $\min\{z_1, \ldots, z_n\}$ and z are finite, and $z \geq m$. For $i = 1, \ldots, n$ and $j = 1, \ldots, z - m$, let $\varrho^i = \varrho^{j-1}_{E_i \uparrow z_i, \bar{E}_i \uparrow \min\{z_1, \ldots, z_m\}}$ and $\varrho[i] = \varrho_{\hat{E}_1, \bar{E}}^{[i-1]}$, where $\varrho^0 = \varrho^{[0]} = \varrho$. Then: $\varrho^n = \varrho_{E_1 \uparrow z_1, \ldots, E_n \uparrow z_n}$ and $\varrho^{z-m} = \varrho_{\hat{E}_1, \bar{E}}^{z-m}$.

PROOF: For the first claim it suffices to show that, for any cells E_i and E_j, the difference between the rank of any subset A_i of E_i that is in \mathcal{A} and the rank of any subset A_j of E_j that is in \mathcal{A} changes by the same amount $z_i - z_j$ in the Shenoy shift from ϱ to $\varrho_{E_i \uparrow z_i, \ldots, E_n \uparrow z_n}$ as it does in the n consecutive Shenoy shifts from ϱ^0 to ϱ^1 to ... to ϱ^n. Since any proposition in \mathcal{A} is a finite union of one or more of these subsets that are in \mathcal{A} – viz., the union of the proposition’s intersections with the cells (which are in \mathcal{A} as the proposition and the cells are) – and since both the one Shenoy shift and the n consecutive Shenoy shifts result in a function satisfying the third axiom, the difference between the rank of any two propositions in \mathcal{A} changes by the same amount in the one shift as it does in the n consecutive shifts. Since the resulting two functions also satisfy the first axiom, they are the same ranking function.
The former differences are given by
\[
\varrho_{E_1 \uparrow E_1 \uparrow z_1 \ldots E_n \uparrow z_n} (A_i) - \varrho_{E_1 \uparrow E_1 \uparrow z_1 \ldots E_n \uparrow z_n} (A_j) = \varrho(A_i) + z_i - \min \{ \varrho(E_1) + z_1, \ldots, \varrho(E_n) + z_n \} - \\
- \left(\varrho(A_j) + z_j - \min \{ \varrho(E_1) + z_1, \ldots, \varrho(E_n) + z_n \} \right) \\
= \varrho(A_i) - \varrho(A_j) + z_i - z_j
\]

Where \(\sigma = \sum_{k=1}^{n} \min \{ \varrho^{k-1}(E_k) + z_k, \varrho^{k-1}(E_k) + \min \{ z_1, \ldots, z_n \} \} \), the latter differences are given by
\[
\varrho^n(A_i) - \varrho^n(A_j) = \varrho(A_i) + z_i + (n - 1) \times \min \{ z_1, \ldots, z_n \} - \sigma - \\
- \left(\varrho(A_j) + z_j + (n - 1) \times \min \{ z_1, \ldots, z_n \} - \sigma \right) \\
= \varrho(A_i) - \varrho(A_j) + z_i - z_j
\]

This is so because the \(\varrho^k \)-rank of any subset \(A_i \) of \(E_l \) that is in \(\mathcal{A} \) is given by
\[
\varrho^k(A_i) = \min \left\{ \varrho^{k-1}(A_i) + z_k - \min \left\{ \varrho^{k-1}(E_k) + z_k, \varrho^{k-1}(E_k) + \min \{ z_1, \ldots, z_n \} \right\} , \right. \\
\varrho^{k-1}(A_i) + \min \{ z_1, \ldots, z_n \} - \min \left\{ \varrho^{k-1}(E_k) + z_k, \varrho^{k-1}(E_k) + \min \{ z_1, \ldots, z_n \} \right\} \right\}.
\]

For \(l = k \) this is
\[
\varrho^k(A_i) = \varrho^{k-1}(A_i) + z_l - \min \left\{ \varrho^{k-1}(E_k) + z_k, \varrho^{k-1}(E_k) + \min \{ z_1, \ldots, z_n \} \right\}.
\]

For \(l \neq k \) this is
\[
\varrho^k(A_i) = \varrho^{k-1}(A_i) + \min \{ z_1, \ldots, z_n \} - \min \left\{ \varrho^{k-1}(E_k) + z_k, \varrho^{k-1}(E_k) + \min \{ z_1, \ldots, z_n \} \right\}.
\]

Therefore, \(\varrho^n(A_i) \) results from \(\varrho(A_i) \) by once adding \(z_i \), by \(n - 1 \) times adding \(\min \{ z_1, \ldots, z_n \} \), and by subtracting \(n \) terms of the form
\[
\min \left\{ \varrho^{k-1}(E_k) + z_k, \varrho^{k-1}(E_k) + \min \{ z_1, \ldots, z_n \} \right\},
\]

namely one for each \(k = 1, \ldots, n \).

For the second claim it suffices to show that the difference between the rank of any subset \(A \) of \(E \) that is in \(\mathcal{A} \) and the rank of any subset \(B \) of \(E \) that is in \(\mathcal{A} \) changes by the same amount \(z - m \) in the Shenoy shift from \(\varrho \) to \(\varrho_{E_1 \uparrow E_1 \uparrow z_1 \ldots E_1 \uparrow z_1} \), as it does in the \(z - m \) consecutive Shenoy shifts from \(\varrho^0 \) to \(\varrho^1 \) to ... to \(\varrho^{z-m} \).
The former differences are given by
\[\varrho_{E \cap \Xi_m} (A) - \varrho_{E \cap \Xi_m} (B) = \varrho (A) + z - \min \left\{ \varrho (E) + z, \varrho (\overline{E}) + m \right\} - \left(\varrho (B) + m - \min \left\{ \varrho (E) + z, \varrho (\overline{E}) + m \right\} \right) = \varrho (A) - \varrho (B) + z - m \]

Where \(\sigma = \sum_{k=1}^{z-m} \min \left\{ \varrho^{[k-1]} (E) + 1, \varrho^{[k-1]} (\overline{E}) + 0 \right\} \), the latter differences are given by
\[\varrho^{[z-m]} (A) - \varrho^{[z-m]} (B) = \varrho (A) + (z - m) \times 1 - \sigma - (\varrho (B) + (z - m) \times 0 - \sigma) = \varrho (A) - \varrho (B) + z - m \]

This is so because the \(\varrho^{[k]} \)-rank of any subset \(A \) of \(E \) that is in \(\mathcal{A} \) is given by
\[\varrho^{[k]} (A) = \varrho^{[k-1]} (A) + 1 - \min \left\{ \varrho^{[k-1]} (E) + 1, \varrho^{[k-1]} (\overline{E}) + 0 \right\} , \]
while the \(\varrho^{[k]} \)-rank of any subset \(B \) of \(\overline{E} \) that is in \(\mathcal{A} \) is given by
\[\varrho^{[k]} (B) = \varrho^{[k-1]} (B) + 0 - \min \left\{ \varrho^{[k-1]} (E) + 1, \varrho^{[k-1]} (\overline{E}) + 0 \right\} . \]

So, \(\varrho^{[z-m]} (A) \) results from \(\varrho (A) \) by \(z - m \) times adding 1, and by subtracting \(z - m \) terms of the form
\[\min \left\{ \varrho^{[k-1]} (E) + 1, \varrho^{[k-1]} (\overline{E}) + 0 \right\} , \]
namely one for each \(k = 1, \ldots, z - m \). On the other hand, \(\varrho^{[z-m]} (B) \) results from \(\varrho (B) \) by \(z - m \) times adding 0, and by subtracting \(z - m \) terms of the form
\[\min \left\{ \varrho^{[k-1]} (E) + 1, \varrho^{[k-1]} (\overline{E}) + 0 \right\} , \]
namely one for each \(k = 1, \ldots, z - m \).

Theorem 7 An ideal doxastic agent’s beliefs are consistent and deductively closed in the finite / countable / complete sense, and her conditional beliefs given any condition she deems possible are conditionally consistent and deductively closed given this condition in that sense – and both would remain so in response to any finite sequence of finite experiences of finite reliability she deems possible – if, and only if, her grades of disbelief are a finitely / countably / completely minimitive ranking function that are related to her grades of conditional disbelief given any condition she deems possible by the difference formula, and that would be updated according to the “extended” update rule in response to any finite experience of finite reliability she deems possible.
5.6. APPENDIX: PROOFS

Proof: Let \(\varrho \) be the agent’s grade of disbelief function, and let \(C \) be a proposition in the set of her opinions \(\mathcal{A} \) that she deems possible. The agent’s conditional belief set given \(C \), \(\mathcal{B}_{\varrho(C)} \), is the set of propositions with a positive grade of conditional disbelief given \(C \), \(\mathcal{B}_{\varrho(C)} = \{ A \in \mathcal{A} : \varrho(A \mid C) > 0 \} \).

Let \(C \) be a proposition from \(\mathcal{A} \). \(\mathcal{B} \subseteq \mathcal{A} \) is conditionally consistent given \(C \) in the finite / countable / complete sense if, and only if, for every finite / countable / arbitrary \(\mathcal{B}^- \subseteq \mathcal{B} \): \(C \cap \bigcap \mathcal{B}^- \neq \emptyset \). It is conditionally deductively closed given \(C \) in the finite / countable / complete sense if, and only if, for every finite / countable / arbitrary \(\mathcal{B}^- \subseteq \mathcal{B} \) and all \(A \in \mathcal{A} \): if \(C \cap \bigcap \mathcal{B}^- \subseteq A \), then \(A \in \mathcal{B} \).

The update rule needs to be extended because it now needs to specify not only new grades of disbelief, but also new grades of conditional disbelief. The extended update rule is the update rule with the additional clause that the agent’s new grades of conditional disbelief given any condition she deems possible (in the sense of her new grades of disbelief) are related to her new grades of disbelief by the difference formula. We will only deal with the cases not already dealt with in the proof of theorem 5.

For the direction from right to left suppose the agent’s grades of disbelief are a finitely / countably / completely minimitive ranking function that are related to her grades of conditional disbelief given any condition she deems possible by the difference formula. Suppose further they would be updated according to the extended update rule in response to any finite experience of finite reliability she deems possible. Then all future grades of disbelief she might have in response to any such experience would be such a ranking function. Furthermore, they would be related to her future grades of conditional disbelief given any condition she deems possible (in the sense of her future grades of disbelief) by the difference formula. Thus, her current conditional belief set given any condition she deems possible is conditionally consistent and conditionally deductively closed in the finite / countable / complete sense – and would remain so in response to any finite sequence of finite experiences of finite reliability.

For the direction from left to right we can assume that the agent’s grades of disbelief are a finitely / countably / completely minimitive ranking function. Thus,

\[
\varrho(C) = \min \{ \varrho(A \cap C), \varrho(\overline{A} \cap C) \}
\]

for all propositions \(A \) and \(C \) in the set of her opinions. There are two cases. Case one: \(\varrho(A \cap C) < \varrho(\overline{A} \cap C) \), and case two: \(\varrho(A \cap C) \geq \varrho(\overline{A} \cap C) \).

If, in case one, the agent disbelieved \(C \) and she received the information \(C \) – but no logically stronger information – from a source she deemed independent and
mp-reliable, and this was all that directly affected her doxastic state, she would reduce her grade of disbelief for C by 1, and she should reduce her grade of disbelief for $A \cap C$ by 1 – otherwise she would violate the axioms of ranking theory.

If, in case two, the agent disbelieved C (and, hence, $\overline{A} \cap C$) and she received the information $\overline{A} \cap C$ – but no logically stronger information – from a source she deemed independent and mp-reliable, and this was all that directly affected her doxastic state, she would reduce her grade of disbelief for $\overline{A} \cap C$ by 1, she would increase her grade of conditional disbelief for A given C by 1 if she did not conditionally disbelieve A given C because of clause (iii), and she should reduce her grade of disbelief for C by 1 – otherwise she would violate the axioms of ranking theory.

Suppose first that, for some propositions A and C in the agent’s algebra, her grade of conditional disbelief in A given C is greater than the difference between her grades of disbelief in $A \cap C$ and C, respectively, and her grade of disbelief for C is finite: $\varrho(A | C) > \varrho(A \cap C) - \varrho(C)$. This implies that $\varrho(A \cap C) - \varrho(C)$ and $\varrho(A \cap C)$ are finite, and that the agent conditionally disbelieves A given C. The latter in turn implies that the agent should not conditionally disbelieve \overline{A} given C.

If the agent does not disbelieve C, assume she receives the information $A \cap C$ – but no logically stronger information – from $\varrho(A \cap C)$ (which is finite) sources she deems independent and mp-reliable, and this is all that directly affects her doxastic state. At this point she would not disbelieve $A \cap C$ nor C (otherwise her beliefs would be inconsistent). However, since $\varrho(A | C) > \varrho(A \cap C) - \varrho(C) = \varrho(A \cap C)$, she might still conditionally disbelieve A given C even if all these sources also provided the conditional information A given C. In other words, the agent would not disbelieve C, nor would she believe the material conditional $C \rightarrow A$, but she might conditionally believe A given C. This contradicts our first assumption.

So, assume the agent disbelieves C.

If $\varrho(A \cap C) < \varrho(\overline{A} \cap C)$, suppose the agent receives the information C – but no logically stronger information – from $\varrho(C)$ (which is finite) sources she deems independent and mp-reliable, and this is all that directly affects her doxastic state. At this point she would not disbelieve C, her grade of conditional disbelief for A given C would be $\varrho(A | C)$ because of clause (ii), and her grade of disbelief for $A \cap C$ should be $\varrho(A \cap C) - \varrho(C)$ because of case one applied $\varrho(C)$ times. Next suppose she receives the information $A \cap C$ – but no logically stronger information – from $\varrho(A \cap C) - \varrho(C)$ sources she deems independent and mp-reliable, and this is all that directly affects her doxastic state. At this point she would not
disbelieve $A \cap C$ nor C (otherwise her beliefs would be inconsistent). However, since $\varrho(A | C) > \varrho(A \cap C) - \varrho(C)$, she might still conditionally disbelieve A given C even if all these sources also provided the conditional information A given C. In other words, the agent would not disbelieve C, she would not believe the material conditional $C \rightarrow \overline{A}$, but she might conditionally believe \overline{A} given C. This contradicts our first assumption.

If $\varrho(A \cap C) \geq \varrho(\overline{A} \cap C)$, suppose the agent receives the information $\overline{A} \cap C$ – but no logically stronger information – from $\varrho(C)$ sources she deems independent and mp-reliable, and this is all that directly affects her doxastic state. At this point she should not disbelieve C because of case two applied $\varrho(C)$ times. Furthermore, her grade of conditional disbelief for A given C should be $\varrho(A | C) + \varrho(C)$ because of clause (iii) and our assumption $\varrho(A | C) > 0$, which implies that the agent disbelieves A given C, so should not disbelieve \overline{A} given C. Finally, her grade of disbelief for $A \cap C$ would be at most $\varrho(\overline{A} \cap C)$. The latter is so because the agent deems these $\varrho(C)$ sources independent and mp-reliable, so would decrease her grade of disbelief in C (as well as $\overline{A} \cap C$). Hence, she would not increase her grade of non-conditional disbelief for any proposition. Next suppose she receives the information $A \cap C$ – but no logically stronger information – from $\varrho(A \cap C)$ sources she deems independent and mp-reliable, and this is all that directly affects her doxastic state. At this point she would not conditionally disbelieve A given C. If receiving the conditional information A given C from any one of these source raised the agent’s grade of disbelief for C, it would not lower her grade of disbelief for $A \cap C$. This is so because the agent deems these sources independent and mp-reliable. So, if
she increased her grade of disbelief for C, she would not decrease her grade of non-conditional disbelief for any proposition. Suppose there are n such sources, $0 \leq n \leq \varrho(A \mid C)$. Then the agent’s grade of disbelief for C would be $\varrho(C) + n$. Her grade of disbelief for $A \cap C$ would be at least $\varrho(A \cap C) - \varrho(A \mid C) + n$, even if the $\varrho(A \mid C) - n$ sources also provided the information $A \cap C$. Next suppose she receives the information C—but no logically stronger information—from $\varrho(C) + n$ (which is finite) sources she deems independent and mp-reliable, and this is all that directly affects her doxastic state. At this point she would still not conditionally disbelieve A given C because of clause (ii). Furthermore, she would not disbelieve C. However, since $\varrho(A \cap C) - \varrho(A \mid C) + n - (\varrho(C) + n) > 0$, she might disbelieve $A \cap C$ even if the $\varrho(C) + n$ sources also provided the information $A \cap C$. In other words, the agent would not disbelieve C, she would not conditionally believe \bar{C} given C, but she might believe the material conditional $C \rightarrow \bar{A}$. This contradicts our first assumption.

As mentioned, the second option renders the difference formula a substantial normative requirement. By contrast, the normative requirements of the update rule now reduce to the difference formula and the axioms of ranking theory. This is seen as follows, where, in light of theorem 6, we can restrict ourselves to the case of a simple and minimal experience the agent deems possible. Suppose the agent deems both E and \bar{E} possible at time t, and between times t and t' she receives the information E—but no logically stronger information—from a source she deems independent and mp-reliable, and this is all that directly affects her doxastic state. We have to show that, for any proposition A in the set of her opinions, her grade of conditional disbelief for A given E, as well as for A given \bar{E}, would not alter. In light of the above we can assume that the agent’s grades of disbelief satisfy the axioms of ranking theory and are related to her grades of conditional belief given any condition she deems possible by the difference formula.

Let $\varrho(\cdot), \varrho(\cdot \mid \times)$ be the agent’s grades of (conditional) disbelief at t, and $\varrho'(\cdot), \varrho'(\cdot \mid \times)$ those at t'. If $\varrho(E) = 0$, clause (iii) implies that $\varrho'(\bar{E}) = \varrho'(\bar{E} \mid W) \equiv \varrho(\bar{E}) = \varrho(E) + 1$ and $\varrho'(A \cap \bar{E}) = \varrho'(A \cap \bar{E} \mid W) \equiv \varrho(A \cap \bar{E} \mid W) + 1 = \varrho(A \cap \bar{E}) + 1$. If $\varrho(E) > 0$, $\varrho'(E) = \varrho(E) - 1$. Since the source is mp-reliable, it follows that $\varrho'(\bar{E}) \leq \varrho(\bar{E})$ and $\varrho'(A \cap \bar{E}) \leq \varrho(A \cap \bar{E})$. Clause (iii) implies that $\varrho'(\bar{E}) = \varrho'(\bar{E} \mid W) \geq \varrho(\bar{E} \mid W) = \varrho(\bar{E})$ and $\varrho'(A \cap \bar{E}) = \varrho'(A \cap \bar{E} \mid W) \geq \varrho(A \cap \bar{E} \mid W) = \varrho(A \cap \bar{E})$. Thus, in all cases $\varrho'(A \cap \bar{E}) - \varrho'(\bar{E}) = \varrho(A \cap \bar{E}) - \varrho(\bar{E})$, so $\varrho'(\cdot \mid \bar{E}) = \varrho(\cdot \mid \bar{E})$. Clause (ii) implies that $\varrho'(\cdot \mid E) = \varrho(\cdot \mid E)$. Q.E.D.
Chapter 6

Applications in Epistemology

In this chapter I will apply ranking theory to two problems in epistemology and the philosophy of science: conceptual belief change, including logical learning, as well as learning indicative conditionals. Then I will dissolve a worry raised by Weisberg (2015). I rely on Huber (2009; 2014b; 2015b).

6.1 Conceptual belief change and logical learning

In epistemology ranking theory is a theory of belief and its revision. It studies how an ideal doxastic agent should organize her beliefs and conditional beliefs at a given moment in time, and how she should revise these beliefs across time if she receives new information. In chapters 3 and 4 we have come across the following three cases of belief revision. First, the case where the new information comes in the qualitative form of a sentence or proposition of the agent’s language or algebra, as in the AGM theory of belief revision. Second, the case where the new information comes in the comparative form of the relative positions of an input sentence and a reference sentence, as in two-dimensional belief revision. Third, the case where the new information comes in the quantitative form of new grades of disbelief for individual propositions of the agent’s language or algebra, as in plain and Spohn conditionalization. Alternatively, this is the case where the new information comes in the quantitative form of the differences between the old and new grades of disbelief for these propositions, as in Shenoy conditionalization. Let us call such information that concerns individual sentences or propositions of the agent’s language or algebra factual information. The corresponding changes in belief are called factual belief changes.
There are at least two other forms of information an ideal doxastic agent may receive. She may acquire a new concept (with or without additionally receiving factual information). In particular, she may receive information about the logical relations between various concepts. I will treat such logical “learning” as a special case of conceptual “learning” (the quotes remind us that the agent is not assumed to be infallible: the information by which she revises her beliefs can be false, as mentioned in section 5.3). The agent may also receive conditional information in the form an indicative conditional that – unlike a material or counterfactual conditional – does not express a single propositional content. Consequently, there are at least two other forms of belief change.

Conditional belief changes are the topic of the next section. In the case of **conceptual belief changes** the agent receives information to the effect that her language or algebra was too poor or coarse-grained. For instance, Ida may start out with a language that allows her to distinguish between red wine and white wine, and then acquire the concept of rosé. She may also receive the information that one can distinguish between wine that is *barrique*-aged and wine that is not.

When real agents learn a new concept, they usually learn it together with a host of other things that are not purely conceptual, but partly factual. For instance, someone who learns that one can distinguish between wine that is *barrique*-aged and wine that is not, usually also learns that *barriques* are oak barrels of a specific shape and size commonly used in Bordeaux. The update rule below deals only with the clinically clean case of new information that is purely conceptual. This is no restriction, though. The factual information that may accompany a conceptual belief change can be dealt with in a separate step by the update rule of chapter 4. Phenomenologically, a purely conceptual and a purely factual belief change may appear to us to be one, but for the purposes of constructive theorizing it is best to keep them separate.

As a preparatory step, note that in Bayesianism there is no genuinely unbiased assignment of probabilities – an *ur*- or *tabula rasa* prior, as we might call it. This is so even if we consider just a finite set of (more than two) possibilities. One might think that assigning a probability of $\frac{1}{6}$ to each of the six outcomes of a throw of a die is such an unbiased assignment. To see that this is not so, note that it follows from this “uniform” assignment that the proposition that the number of eyes the die will show is greater than one, \{2, 3, 4, 5, 6\}, is five times the probability of its negation, \{1\}. More generally, for every probability measure \(\Pr\) on the power-set of \(W = \{1, \ldots, 6\}\) there exists a contingent proposition \(A\) such that \(\Pr (A) > \Pr (W \setminus A)\). Here, a proposition is contingent if, and only if, both it and its complement are non-empty.
This is the sense in which there is no genuinely unbiased ur- or tabula rasa prior in Bayesianism. The reason the uniform assignment of probabilities is of no help is that it is inseparably tied to the underlying space of possibilities – a fact employed by Bertrand (1889) in his famous paradoxes. Without a privileged way of conceptualizing reality, it can be used to generate just about any probability. To illustrate, consider percentage grades ranging from 0 to 100, as well as letter grades: an A corresponds to a percentage grade of 80 or more, a B to at least 70 but less than 80, a C to at least 60 but less than 70, a D to at least 50 but less than 60, and an F to less than 50. The uniform assignment of probabilities over the former grading scheme looks radically different from the one over the latter (and both differ from the one over GPA values): the probability of passing is 1/2 in the former case, but 4/5 in the latter (and 11/12 in the case of GPA values).

In ranking theory the tabula rasa assigns zero to all non-empty propositions, no matter how rich the algebra of propositions over the underlying set of possible worlds W. It suspends judgment with respect to every contingent proposition and disbelieves only the empty proposition \emptyset. In our example of the grading schemes, passing and failing both receive rank zero, no matter whether one uses percentage grades or letter grades (or GPA values). In a sense the tabula rasa believes “the” tautological proposition W. However, since this proposition is itself changing in conceptual belief changes, it is more accurate to say that the tabula rasa disbelieves the empty proposition. The latter is not changing.

The fact that there is a genuinely unbiased assignment of ranks, but not of probabilities has implications for conceptual belief change: in Bayesianism it is impossible to adequately model it (Stanford 2006 provides examples from the history of science that illustrate how the ability to acquire new concepts furthers scientific progress). Prior to acquiring a new concept Ida’s friend Bay is equipped with a probability measure \Pr on an algebra of propositions over some set of possibilities W. When Bay acquires a new concept, the possibilities in W become more fine-grained and result in a richer set of new possibilities W'. Formally, this means that for each w in W there is at least one w' in W' – a so-called “refinement” of w – such that w' is at least as specific as w. Besides refinements, W' may also contain entirely novel possibilities. Since the change from W to W' is assumed to be purely conceptual, we can assume that no w' in W' is a refinement of more than one w in W. To illustrate, Bay’s set of oenological possibilities with regard to a particular bottle of wine prior to learning that one can distinguish between wine that is barrique-aged and wine that is not may be $W_1 = \{\text{red}, \text{white}\}$. After acquiring this conceptual distinction her set of oenological possibilities may be $W_2 = \{\text{red & barrique}, \text{red & \neg barrique}, \text{white & barrique}, \text{white & \neg barrique}\}$.
(Here I assume Bay to be logically omniscient. Suppose she is not and fails to be certain that barrique $\& \neg$ barrique is logically inconsistent. Then her set of new possibilities may include red $\&$ barrique & \neg barrique. If she subsequently learns that this possibility of hers is not logically possible, she can eliminate it along the lines sketched below.)

For Bay to not lose conceptual distinctions in this conceptual belief change, the new algebra over W_2 must contain a unique counterpart-proposition for each proposition in the old algebra over W_1. In our example the algebras are the powersets. The unique counterpart-proposition of the old proposition that it is a bottle of red wine, $\{\text{red}\} \subseteq W_1$, is the new proposition that it is a bottle of red wine, $\{\text{red} \& \text{barrique}, \text{red} \& \neg \text{barrique}\} \subseteq W_2$. More generally, in moving from W to the richer W^*, the counterpart-proposition of the old proposition $A \subseteq W$ is the new proposition $A' = \{w^* \in W^* : w^*$ is a refinement of some $w \in A\}$.

Besides counterpart-propositions, the new propositions may include entirely novel propositions that do not contain any refinements, but at least one entirely novel possibility. In addition, there are new propositions that consist entirely of refinements, but are not the counterpart-propositions of old propositions, as well as new propositions that contain both refinements and entirely novel possibilities.

The characteristic feature of a purely conceptual belief change is that the agent does not receive new factual information about which possibility is actual. To make this precise, suppose Ida is the one undergoing the conceptual belief change, and R is her ranking function on the power-set of W. Ida’s ranking function R^* on the power-set of the richer W^* must satisfy three constraints in order for the belief change from R to R^* to be purely conceptual.

First, $R(A) = R^*(A')$ for each old proposition A from W and its counterpart-proposition A' from W^*. Otherwise Ida receives new factual information about which old possibility is actual.

Second, $R^*(B) = R^*(W^* \setminus B)$ for each entirely novel proposition B from W^* (in the case of W_2 there are no such propositions B). Otherwise Ida receives new factual information about which entirely novel possibility is actual.

Third, $R^*(C \mid \{w\}') = R^*(\{w\}' \setminus C \mid \{w\}')$ for each old possibility w in W and each new proposition C from W^* that is conditionally contingent given $\{w\}'$ in the sense that both $\{w\}' \cap C$ and $\{w\}' \setminus C$ are non-empty (in the case of W_3 there are no such propositions C). Otherwise Ida receives new factual information about which refinement of some old possibility is actual given that the latter possibility obtains.
Let \(R_1 \) be Ida’s ranking function on the power-set of \(W_1 \). Then this is achieved by letting her \(R_2 \) on the power-set of \(W_2 \) be the unique ranking function that equals \(R_1 \) on the counterpart-propositions \(A' \) of the old propositions \(A \), and that equals the tabula rasa on the new propositions \(C \) that are conditionally contingent given the counterpart-propositions \(\{w\}' \) of the old possibilities \(w \) in \(W_1 \) (as well as the entirely novel propositions \(B \)).

The same is true for the different conceptual belief change that occurs when Ida acquires the concept of rosé, thus learning that her old set of possibilities was not exhaustive. Ida’s ranking function on the power-set of \(W_3 = \{ \text{red, white, rosé} \} \) is the unique \(R_3 \) that assigns rank zero to each entirely novel singleton-proposition \(\{w\}' \), and that equals \(R_1 \) on the counterpart-proposition \(\{w\}' \) of each old singleton-proposition \(\{w\} \) (in this particular case, \(\{w\}' \) equals \(\{w\} \), as red and white are their own refinements).

(As hinted at before, one sentence may pick out different propositions with respect to different sets of possibilities. With respect to \(W_1 \), the sentence ‘It is not a bottle of red wine’ picks out the proposition that it is a bottle of white wine, \(\{\text{white}\} \). With respect to \(W_3 \), this sentence picks out the proposition that it is a bottle of rosé or white wine, \(\{\text{rosé, white}\} \). This implies that, in moving from \(W \) to the richer \(W^* \), the complement of the counterpart-proposition \(A' \) of \(A \), \(W^* \setminus A' \), does not, in general, coincide with the counterpart-proposition of the complement \(W \setminus A \) of \(A \), \((W \setminus A)' \).)

Ida can always satisfy our three constraints on conceptual belief changes – not only if there are at most two refinements of each old possibility, and at most one entirely novel possibility. By contrast, for Bay there is, in general, no way to obtain probability measures \(\Pr \) on the power-set of \(W \) and \(\Pr^* \) on the power-set of the richer \(W^* \) such that \(\Pr^* (B) = \Pr^* (W^* \setminus B) \) for each entirely novel proposition \(B \) from \(W^* \), and \(\Pr^* (C | \{w\}') = \Pr^* ((\{w\}') \setminus C | \{w\}') \) for each old possibility \(w \) in \(W \) and each new proposition \(C \) from \(W^* \) that is conditionally contingent given \(\{w\}' \). This is so even if we restrict ourselves to finite sets of possibilities \(W \) and \(W^* \). (There are such probability measures in the special case mentioned above, though.)

Arntzenius (2003) relies on just this inability of Bay’s to cope with changes of the underlying set of possibilities when he uses “spreading” to argue against strict conditionalization, as well as van Fraassen (1984; 1995)’s (strictly diachronic) reflection principle. (The other feature used by Arntzenius 2003 is “shifting.” It ignores that we humans are never in the situation of not receiving any information. As noted in section 4.2, this quickly leads to the erosion of our beliefs.)

Before turning to the special case of logical learning let me officially state
Update Rule 4 (Conceptual Conditionalization) Suppose \(\varrho (\cdot) : \mathcal{A} \rightarrow \mathbb{R} \cup \{\infty\} \) is the ideal doxastic agent’s ranking function at time \(t \), and \(\mathcal{A} = \varrho (W) \). Suppose further between \(t \) and \(t' \) her set of possibilities \(W \) is directly affected and extends to the richer \(W' \) in the sense that for each \(w \in W \) there is at least one refinement \(w' \in W' \), and no \(w' \in W' \) is a refinement of more than one \(w \in W \). Finally, suppose her doxastic state is not directly affected in any other way such as losing a conceptual distinction, receiving new factual information, etc. Then her algebra of propositions at time \(t' \) should be \(\varrho (W') \), and her ranking function \(\varrho' \) at \(t' \) should be such that \(\varrho' ([w]) = \varrho ([w]) \) for each refinement \(w' \in W' \) of \(w \in W \), and \(\varrho' ([w']) = 0 \) for every \(w' \in W' \) that is not a refinement of any \(w \in W \).

Note that this includes the case where \(W \) extends to some super-set \(W^+ \supseteq W \).

We can also consider the reverse process where the agent’s set of possibilities \(W \) reduces to a subset \(W^- \subseteq W \). In this case Ida’s new ranking function on the power-set of \(W^- \) copies the update rule on the partition \(\{W^-, W \setminus W^-\} \) with input parameters 0 and \(\infty \), respectively. Bay can proceed analogously by adopting the probability measure \(\Pr^- (B) = \Pr (B \mid W^-) \) on the algebra \(\{A \cap W^- : A \in \mathcal{A}\} \) over \(W^- \), provided \(\Pr \) assigns a positive probability to \(W^- \) (\(\mathcal{A} \) is the algebra over \(W \)).

In addition, the agent’s possibilities in \(W \) can become less fine-grained so that several of them are bundled into one. Suppose between \(t \) and \(t' \) her set of possibilities \(W \) is directly affected and reduces to the poorer \(V \) in the sense that for each \(v \in V \) there is at least one refinement \(w \in W \), and no \(w \in W \) is a refinement of more than one \(v \in V \). In this case the new ranking function on the power-set of \(V \) copies the update rule on the partition \(\{W \setminus N, N\} \), where \(N \subseteq W \) is the set of possibilities in \(W \) that are not refinements of any \(v \in V \). Ida’s new grade of disbelief for \(A \subseteq V \) is her old conditional grade of disbelief for \(A \)’s counterpart-proposition \(A' \subseteq W \) given \(W \setminus N \). Provided \(\Pr \) assigns a positive probability to \(W \setminus N \) and the algebras over \(V \) and \(W \) are suitably related, Bay can again proceed analogously by adopting the probability measure \(\Pr^- (A) = \Pr (A' \mid W \setminus N) \).

Thus, reductions are dealt with in a way similar to factual belief changes. However, there are differences. First reducing the set of possibilities from the richer \(W \) to the poorer \(V \), and then extending the poorer \(V \) back to the richer \(W \), will, in general, not result in the original ranking function. The reason is that a reduction erases the agent’s opinions about the possibilities in \(N \), as well as her conditional opinions about each \(C \subseteq \{v\}' \subseteq W \) that is conditionally contingent given \(\{v\}' \), for a \(v \in V \). And, by design, conceptual conditionalization does not (re-) introduce any (biased) opinions. Another difference is that, in a reduction, possible worlds are eliminated entirely, and not just sent to some high rank.
Why should the ideal doxastic agent obey conceptual conditionalization? The answer to this question comes in two steps. First, her new grades of disbelief at time t' should be a ranking function on the power-set of W^*, as this is a necessary means to attaining the end of having an opinion on as many propositions as she can, and of holding no false belief and as many true beliefs as she can. Second, among all update rules resulting in a ranking function on the power-set of W^*, conceptual conditionalization is the only one that renders belief changes purely conceptual in the sense of our three constraints: the agent does not receive new factual information about which old possibility is actual; she does not receive new factual information about which entirely novel possibilities is actual; and she does not receive new factual information about which refinement of some old possibility is actual given that the latter possibility obtains.

Let us turn to logical learning. One form it can take is for the agent to receive the information that a sentence α logically implies a sentence β (Einstein 1915’s explanation of the anomalous perihelion of Mercury is often considered to be an example; see Garber 1983, Jeffrey 1983b, Niiniluoto 1983, Earman 1992: ch. 5, Sprenger & Hartmann 2019: ch. 6, Eva & Hartmann forthcoming). Another form it can take is for the agent to receive the information that α does not logically imply β (Cohen 1963’s proof that the continuum hypothesis is logically independent of Zermelo-Fraenkel set theory with the axiom of choice, if Zermelo-Fraenkel set theory is logically consistent, is an example). In the former case the agent might receive the information that α and $\neg \beta$ are logically incompatible (but see below). If so, this case is a reduction. In the latter case the agent receives the information that α and $\neg \beta$ are logically compatible. This case is an extension. Ida can handle both cases. Bay can handle reductions in the way sketched above, or along the lines of Pettigrew (forthcoming) who builds on work by Hacking (1967). However, Bay cannot handle extensions, as Hacking (1967: 318) acknowledges.

So far I have assumed the set of possible worlds W to be given, and the notion of a refinement to be a primitive that guarantees that no new possibility is the refinement of more than one old possibility. Refinements can take several forms. For instance, one can take the Cartesian product of the set of old possibilities W, e.g. \{red, white\}, and a set of new options O, e.g. \{barrique, \negbarrique\}. A new possibility w^* in $W \times O$ is a refinement of an old possibility w in W if, and only if, $w^* = \langle w, o \rangle$ for some new option o in O. To deal with logical learning I will now present one way to construct possible worlds. As mentioned in section 3.1, a formal language L is defined recursively from a countable set of propositional letters. In the case of a predicate or modal language things are slightly more complicated, but otherwise proceed in the same recursive manner.
The power-set of a formal language L, $\wp (L)$, is one way to construct the set of possible worlds for L. A sentence α in L is true in a possible world w in $\wp (L)$ if, and only if, $\alpha \in w$. Among these possible worlds there are, of course, many that are logically inconsistent or logically incomplete, i.e. not maximal. However, this is information the agent may not have.

To illustrate, suppose there are two propositional letters, p and q, the formal language is $L(p,q)$, and initially Ida’s set of possible worlds is $W \subseteq \wp (L(p,q))$. First Ida receives the information that $\{p,q\}$ is logically incompatible with $\neg p$. Therefore, she eliminates all sets of sentences that contain these three sentences. Next Ida receives the information that the schema $\alpha \land \neg \alpha$ is logically inconsistent. So, she eliminates all sets of sentences that contain a sentence of this form. Then Ida receives the information that $p \lor \neg p$ is logically valid. Hence, she refines each set of sentences w by enlarging it to $w \cup \{p \lor \neg p\}$ – unless $w \cup \{p \lor \neg p\} \in W$ in which case she eliminates w. Finally, Ida receives the information that p logically implies $p \lor q$. As a result, she refines every set of sentences w that contains p, but not $p \lor q$, by enlarging it to $w \cup \{p \lor q\}$ – unless $w \cup \{p \lor q\} \in W$ in which case she eliminates w. (If, thereby, she also receives the information that p is logically incompatible with $\neg (p \lor q)$, she eliminates all sets of sentences that contain these two sentences. However, strictly speaking, this is a separate piece of information.)

This means that receiving the information that one sentence logically implies another may involve refinements. Refinements may also be involved when Ida receives the information that p and $\neg q$ are logically compatible. If W contains a logically consistent set of sentences containing p and $\neg q$, no action is taken. Otherwise Ida refines at least one set of sentences w that contains p and does not logically imply q by enlarging it to $w \cup \{\neg q\}$, or she refines at least one set of sentences w that contains $\neg q$ and does not logically imply $\neg p$ by enlarging it to $w \cup \{p\}$. If there are no such sets, Ida adds $\{p, \neg q\}$ as entirely novel set of sentences.

So far Ida’s logical learning has taken place within the fixed language $L(p,q)$. However, Ida can also learn by enriching her vocabulary. Suppose she comes across a new propositional letter r so that the new language is $L(p,q,r)$. The new options are $O = \wp (L(p,q,r) \setminus L(p,q))$, the set of new possibilities is $W \times O$, and refinements are specified as before. Truth is specified as follows: α in $L(p,q)$ is true in $w \times o$ if, and only if, $\alpha \in w$; α in $L(p,q,r) \setminus L(p,q)$ is true in $w \times o$ if, and only if, $\alpha \in o$. Alternatively, we can let the set of new possibilities be $W^* = \{w \cup o : w \in W, o \in O\}$. Then we say that w^* in W^* is a refinement of w in W if, and only if, $w \subseteq w^*$, and that α in $L(p,q,r)$ is true in w^* if, and only if, $\alpha \in w^*$. Either way specifies new possibilities, refinements, and truth in a new possibility. Conceptual conditionalization does the rest.
6.2 Learning indicative conditionals

It’s Ida’s birthday, and Bay treats Ida to a fine bottle of red or white wine. Ida is certain of this, but suspends judgment about the color of the wine. The bottle is wrapped in paper, and Ida is curious to find out whether it is \textit{barrique}-aged wine.

Bay provides Ida with the following piece of conditional information: if it is red wine, then it is \textit{barrique}-aged.

Ida deems Bay reliable to a high, but finite grade \(n \). How should Ida revise her beliefs and conditional beliefs when she receives this piece of conditional information? The answer is given by Update Rule 5 (Conditional Conditionalization)

Suppose \(\varrho(\cdot) : \mathcal{A} \rightarrow \mathbb{N} \cup \{\infty\} \) is the ideal doxastic agent’s ranking function at time \(t \), and she deems all cells of the partition \(\{A \cap C, \overline{A} \cap C, \overline{C}\} \) possible at \(t \). Suppose further between \(t \) and \(t' \) her conditional rank for \(A \) given \(C \) is directly affected and improves by \(n \in \mathbb{N} \).

Finally, suppose her doxastic state is not directly affected in any other way. Then her ranking function at time \(t' \) should be \(\varrho_{(A|C)\downarrow n}(\cdot) : \mathcal{A} \rightarrow \mathbb{N} \cup \{\infty\} \), which results from \(\varrho \) by \(n \) consecutive Shenoy-shifts from \(\varrho_{k-1} \) to \(\varrho_k \), \(k = 1, \ldots, n \), \(\varrho_0 = \varrho \), \(\varrho_n = \varrho_{(A|C)\downarrow n}(\cdot) \). Each shift takes place on the partition \(\{A \cap C, \overline{A} \cap C, \overline{C}\} \), and the input parameters for the shift from \(\varrho_{k-1} \) to \(\varrho_k \) are

\[
\begin{align*}
z_{A\cap C} &= 0, \ z_{\overline{A}\cap C} = 1, \ z_{\overline{C}} = x,
\end{align*}
\]

where \(x = 1 \) if \(\varrho_{k-1}(A \cap C) > \varrho_{k-1}(\overline{A} \cap C) \), and \(x = 0 \) otherwise.

This looks awfully complicated. However, that is because of a technical detail. The idea itself is very simple: if she receives the conditional information \(A \mid C \), the agent improves her rank for \(A \cap C \) compared to her rank for \(\overline{A} \cap C \). This can happen in more than one way, though. The agent can decrease her rank for \(A \cap C \) and hold fixed her ranks for \(\overline{A} \cap C \) and \(\overline{C} \). Alternatively, she can increase her rank for \(\overline{A} \cap C \) and hold fixed her ranks for \(A \cap C \) and \(\overline{C} \). Besides these, there are two further ways of improving, as we will see. Which of these should happen depends on the agent’s initial beliefs and the parameter \(n \). In some cases, i.e. if \(0 < \varrho(A \cap C) - \varrho(\overline{A} \cap C) < n \), the agent has to start improving in the first manner and then – mid-way, once \(A \cap C \) and \(\overline{A} \cap C \) are assigned the same rank (which equals the initial rank for \(C \) – switch to the second manner. For this reason conditional conditionalization is formulated in terms of \(n \) consecutive Shenoy shifts. A different and, perhaps, more perspicuous formulation will be given below.
Receiving the conditional information that it is barrique-aged wine if it is red from her friend Bay, who Ida deems reliable to grade \(n \), means that Ida improves her rank for the proposition that it is red and barrique-aged wine compared to her rank for the proposition that it is red wine that is not barrique-aged by \(n \) ranks. Just about everything else depends on Ida’s initial grading of disbelief \(R \).

Suppose Ida initially suspends judgment not only about the color of the wine, but about every other contingent oenological matter she considers.

\[
R(\{\text{red} \& \text{barrique}\}) = 0 \quad R(\{\text{red} \& \neg \text{barrique}\}) = 0 \\
R(\{\text{white} \& \text{barrique}\}) = 0 \quad R(\{\text{white} \& \neg \text{barrique}\}) = 0
\]

Then Ida’s new grading of disbelief \(R^* \) is such that she holds the conditional beliefs that it is barrique-aged wine if it is red, and that it is white wine if it is not barrique-aged. However, she continues to suspend judgment about the color of the wine – non-conditionally, as well as conditional on it being barrique-aged – and about its being barrique-aged – non-conditionally, as well as conditional on it being white. The only contingent belief Ida holds is that it is not red wine that is not barrique-aged.

\[
R^*(\{\text{red} \& \text{barrique}\}) = 0 \quad R^*(\{\text{red} \& \neg \text{barrique}\}) = n \\
R^*(\{\text{white} \& \text{barrique}\}) = 0 \quad R^*(\{\text{white} \& \neg \text{barrique}\}) = 0
\]

Next suppose Ida initially believes that Bay will bring barrique-aged wine, that this will be so if it is red, and that this will be so if it is white. Ida still suspends judgment about the color of the wine – non-conditionally, as well as conditional on it being barrique-aged. However, she now holds the conditional belief that it is red wine if it is not barrique-aged.

\[
R(\{\text{red} \& \text{barrique}\}) = 0 \quad R(\{\text{red} \& \neg \text{barrique}\}) = 5 \\
R(\{\text{white} \& \text{barrique}\}) = 0 \quad R(\{\text{white} \& \neg \text{barrique}\}) = 7
\]

Then Ida’s new grading of disbelief \(R^* \) is such that she continues to believe that it is barrique-aged wine, that this is so if it is red, and that this is so if it is white. She also continues to suspend judgment about the color of the wine – non-conditionally, as well as conditional on it being barrique-aged. However, if, and only if, \(n \geq 2 \), Ida gives up her conditional belief that it is red wine if it is not barrique-aged. If, and only if, \(n > 2 \), she even adopts the opposite conditional belief.

\[
R^*(\{\text{red} \& \text{barrique}\}) = 0 \quad R^*(\{\text{red} \& \neg \text{barrique}\}) = 5 + n \\
R^*(\{\text{white} \& \text{barrique}\}) = 0 \quad R^*(\{\text{white} \& \neg \text{barrique}\}) = 7
\]
As long as the parameter n characterizing the grade to which the agent deems her source of information reliable is finite, there is no contingent proposition an agent receiving conditional information is guaranteed to believe after the update. Nor is there a contingent proposition such an agent is guaranteed to conditionally believe after the update given some condition she deems possible. This includes the very piece of conditional information she receives, as she may deem the source of information somewhat, but insufficiently reliable.

What can be said in general is relative to the agent’s initial grading of disbelief R and the parameter n. Receiving A if C from a source she deems reliable to grade n improves her rank for A by n compared to her rank for \overline{A} within the condition C. Within the conditions $A \cap C$, $\overline{A} \cap C$, and C everything is kept as it is. In other words, conditional conditionalization transforms a given ranking function R into a new ranking function R^* such that (R0) $R^*(\overline{A} \mid C) - R^*(A \mid C) = R(\overline{A} \mid C) - R(A \mid C) + n$, as well as (R1) $R^*(\cdot \mid A \cap C) = R(\cdot \mid A \cap C)$, (R2) $R^*(\cdot \mid A \cap C) = R(\cdot \mid A \cap C)$, and (R3) $R^*(\cdot \mid C) = R(\cdot \mid C)$.

Conditional conditionalization proceeds by a sequence of Shenoy-shifts. Thus, the consistency argument applies and answers the question why an agent who has the end of having an opinion on as many propositions as she can, of holding no false belief and as many true beliefs as she can – now and in response to any finite sequence of finite experiences of finite reliability she deems possible – ought to obey it. There are other ways for Shenoy-shifts to improve the rank for A given C by n and, hence, for attaining this cognitive end. However, among all update rules that proceed by n consecutive and minimal Shenoy-shifts on our three-celled partition $\{A \cap C, \overline{A} \cap C, C\}$ and that improve the conditional rank for A given C by n, conditional conditionalization is the only one that is purely conditional in the sense that (R4a) $R^*(C) = R(C)$ and (R4b) $R^*(C) = R(C)$ (up to the order of the shifts, which does not matter, as Shenoy conditionalization is commutative; see, e.g., Genin & Huber 2020: sct. 3.3). In fact, (R0-4) uniquely characterize conditional conditionalization (provided the three cells have a finite initial rank).

This implies that conditional conditionalization is the rank-theoretic analogue of Bradley (2005)’s “Adams conditionalization.” The latter transforms a given probability measure Pr into a new probability measure Pr^* in response to input of the form (P0) $Pr^*(A \mid C) = p, 0 < p < 1$, such that (P1) $Pr^*(\cdot \mid A \cap C) = Pr(\cdot \mid A \cap C)$, (P2) $Pr^*(\cdot \mid \overline{A} \cap C) = Pr(\cdot \mid \overline{A} \cap C)$, (P3) $Pr^*(\cdot \mid C) = Pr(\cdot \mid C)$, and (P4) $Pr^*(C) = Pr(C)$. Adams conditionalization is uniquely characterized by (P0-4) (provided the three cells have positive initial probability).
(P4) implies that Adams conditionalization cannot change the probability of the condition \(C \). Douven & Romeijn (2011) conclude that this prevents it from being an adequate update rule for conditional information, despite the fact that it solves van Fraassen (1981)’s “Judy Benjamin” problem. In response several philosophers propose to remedy this situation by making available to the agent information that goes beyond the probability calculus – such as information about explanatory relations (Douven 2012), or information about some causal structure (Hartmann & Sprenger 2019: ch. 5, Eva & Hartmann & Rad 2020). The reason this information goes beyond the probability calculus is that, according to Douven (2016: 169), explanatory reasoning cannot be spelled out in Bayesian terms; and that the causal structure of a probabilistic causal model determines (given the Markov and Faithfulness conditions), but is not determined by the independence relation of its probability measure (see, e.g., Hitchcock 2018: sct. 4.4).

Objections to Adams conditionalization tend to come in the form of examples. These examples can be translated into objections to conceptual conditionalization. However, they merely illustrate that constructions involving the English ‘if’ can convey information other than purely conditional information. For instance, such constructions can be used to additionally convey the falsity of the condition (“If Casablanca is the capital of Morocco, I am the Queen of Canada”). They can be used to additionally convey the truth of the condition (“If the temperature is below minus ten degrees Celsius, conditions are as icy as they currently are”). Finally, they can be used to convey the truth of the target proposition (“If you wonder, the capital of Morocco is Rabat”). To the extent that such constructions convey information other than purely conditional information, neither Adams nor conditional conditionalization applies on its own (or, as the case may be, at all).

As in the case of conceptual and logical information, the agent first has to identify the purely conditional portion, if any, of the information she receives. This is work she needs to do prior to applying any update rule. It is not work to be done by the update rules. By analogy, consider conjunctive information. There are constructions involving the English ‘and’ that convey information other than purely conjunctive information, e.g. causal or temporal information (“I had some wine and got tipsy”). Instead of rejecting Jeffrey conditionalization in light of such examples because the revised doxastic states do not reflect the information that is not purely conjunctive, Bayesians first have their agent isolate the purely conjunctive (and, more generally, the purely Boolean) portion of the information she receives. Then they have her apply Jeffrey conditionalization. If her revised doxastic state is to reflect the information that is not purely conjunctive, the agent first must have it. It is input to the update rules, not output the latter are to generate.
That being said, we can accommodate philosophers who prefer an update rule that responds to conditional information even if the latter is not purely conditional – provided the additional information can be formulated in the agent’s language. Recall that there is more than one way to improve the rank for \(A \cap C \) compared to the rank for \(\overline{A} \cap C \). First, one can lower the rank for \(A \cap C \) while keeping the ranks for \(\overline{A} \cap C \) and \(\overline{C} \) fixed. This happens when \(A \cap C \) initially has positive rank and we perform a Shenoy-shift on our partition with input parameters \(z_{\text{ANC}} = 0, z_{\overline{A}NC} = 1, \) and \(z_{\overline{C}} = 1 \). Second, one can raise the rank for \(\overline{A} \cap C \) while keeping the ranks for \(A \cap C \) and \(\overline{C} \) fixed. This happens when \(A \cup \overline{C} \) initially has rank zero and we perform a Shenoy-shift on our partition with input parameters \(z_{\text{ANC}} = 0, z_{\overline{A}NC} = 1, \) and \(z_{\overline{C}} = 0 \).

We have come across these two ways of improving before. There are two more. One can keep the rank for \(A \cap C \) fixed while raising the ranks for \(\overline{A} \cap C \) and \(\overline{C} \). This happens when \(A \cap C \) initially has rank zero and we perform a Shenoy-shift on our partition with input parameters \(z_{\text{ANC}} = 0, z_{\overline{A}NC} = 1, \) and \(z_{\overline{C}} = 1 \). Finally, one can keep the rank for \(\overline{A} \cap C \) fixed while lowering the ranks for \(A \cap C \) and \(\overline{C} \). This happens when \(A \cup \overline{C} \) initially has positive rank and we perform a Shenoy-shift on our partition with input parameters \(z_{\text{ANC}} = 0, z_{\overline{A}NC} = 1, \) and \(z_{\overline{C}} = 0 \).

The first and third way differ only with regard to the agent’s initial beliefs. Similarly for the second and fourth. All set \(z_{\text{ANC}} \) to 0 and \(z_{\overline{A}NC} \) to 1. However, the former set \(z_{\overline{C}} \) to 1, while the latter set \(z_{\overline{C}} \) to 0. The former raise the doxastic standing of \(A \cap C \) compared to \(\overline{A} \cap C \) and \(\overline{C} \). The latter lower the doxastic standing of \(\overline{A} \cap C \) compared to \(A \cap C \) and \(\overline{C} \). Switching \(z_{\overline{C}} \) from 1 to 0 marks the change from bettering the doxastic standing of \(A \cap C \) to worsening that of \(\overline{A} \cap C \).

Conceptual conditionalization starts with \(z_{\overline{C}} \) at 1. Once the rank of \(A \cap C \) is at or below the rank of \(\overline{A} \cap C \), it switches \(z_{\overline{C}} \) to 0. Switching at this point guarantees that the rank of the conditions \(C \) and \(\overline{C} \) remains the same, as required by (R4). However, one can delay switching until, say, the rank of \(A \cap C \) is zero. Another option is to forego switching altogether and always have \(z_{\overline{C}} \) at 1. The opposite extreme is to switch right away and always have \(z_{\overline{C}} \) at 0[7].

[7] Provided the three cells have a finite initial rank, the first variant is uniquely characterized by (R1-3,4a,5); the second by (R1-3,5,6); the third by (R1-3,7). Where \(a = R(\overline{A} \cap C) - n \) and \(b = R(A \cap C) \). (R5) \(R^*(A \cap C) = \max \{0, a\}, R^*(\overline{A} \cap C) = \max \{R(\overline{A} \cap C), R(\overline{A} \cap C) - a\}; \)

(R6) \(R^*(\overline{C}) = \max \{R(\overline{C}), R(\overline{C}) - a\}; \) (R7) \(R^*(\overline{C}) = \max \{R(\overline{C}) - b, R(\overline{C}) - n\}, R^*(A \cap C) = \max \{R(A \cap C) - b, R(A \cap C) - n\}, R^*(\overline{A} \cap C) = \max \{R(\overline{A} \cap C), R(\overline{A} \cap C) + n - b\}. \)
This shows that (R0-3) are compatible with increasing, decreasing, as well as leaving unchanged the rank of the condition \(C \) and the rank of the condition \(\overline{C} \), as required by Douven (2016: ch. 6). They are also compatible with decreasing and leaving unchanged the rank of the target proposition \(A \), and with increasing and leaving unchanged the rank of its complement \(\overline{A} \). However, they are not compatible with increasing the rank of \(A \) or decreasing the rank of \(\overline{A} \). This, too, is in accordance with Douven (2016: ch. 6)'s findings.

Consequently, there is no need to go beyond ranking theory. We just have to make the information conveyed by constructions involving the English ‘if’ in addition to purely conditional information available to the agent. Specifically, if receiving \(A \) if \(C \) comes with additional information to the effect that the doxastic standing of \(A \cap C \) should be raised, or that of \(\overline{A} \cap \overline{C} \) should be lowered, then this is information the agent needs to have in order for her revised doxastic state to reflect it. When I say “If Casablanca is the capital of Morocco, I am the Queen of Canada” I am not suggesting that you raise the doxastic standing of the claim that I am the Queen of Canada and Casablanca is the capital of Morocco. Rather, I am suggesting that you lower the doxastic standing of the claim that (I am not the Queen of Canada and) Casablanca is the capital of Morocco. When I say “If the temperature is below minus ten degrees Celsius, conditions are as icy as they currently are” I am not suggesting that you lower the doxastic standing of the claim that conditions are not as icy as they currently are and the temperature is below minus ten degrees Celsius. Rather, I am suggesting that you raise the doxastic standing of the claim that (conditions are as icy as they currently are and) the temperature is below minus ten degrees Celsius.

In these two cases Adams and conditional conditionalization do not apply on their own, but in combination with Jeffrey conditionalization and the update rule, respectively. To accommodate those who prefer one update rule that responds to conditional information that is not purely conditional (but can be formulated in the agent’s language), we merely have to strengthen (R0-3) and additionally specify when to switch from lowering the rank for \(A \cap C \) relative to \(\overline{A} \cap \overline{C} \) and \(\overline{C} \) to raising the rank for \(\overline{A} \cap C \) relative to \(A \cap C \) and \(C \).

2This can be done in a number of ways. One is to strengthen (R0) to (R0\(^*\)) by adding a second parameter \(m \leq n \) that specifies when to switch \(z^*_C \) from 1 to 0; another is to turn (R4) into input of the form (R4\(^*\)) \(R^* (C) = i, R^* (C) = j, \min \{i, j\} = 0 \); a third is to replace (R0) and (R4) by (R4\(^+\)) \(R^* (C) = i, R^* (A \cap C) = k, R^* (\overline{A} \cap \overline{C}) = l, \min \{k, l\} = j, l - k = R (A \cap C) - R (A \cap C) - n; i, j, k, l, m \in \mathbb{N} \). The resulting update rule is uniquely characterized by (R0\(^*\),1-3), by (R0-3,4\(^*\)), and by (R1-3,4\(^+\)) (provided the three cells have a finite initial rank).
6.2. LEARNING INDICATIVE CONDITIONALS

The same can be done for Adams conditionalization. One way of doing so is to turn the constraint (P4) into input (P4') \(\text{Pr}^*(C) = q, 0 < q < 1 \). Another is to replace (P0) and (P4) by (P4⁺) \(\text{Pr}^*(A \cap C) = r, \text{Pr}^*(\overline{A} \cap C) = s, 0 < r, s < 1, r + s = q, r/q = p \). The resulting update rule is uniquely characterized by (P0-3, 4') and by (P1-3, 4⁺) (provided the three cells have positive initial probability). So, there is no need to go beyond the probability calculus either. We merely have to make available to the agent the information her revised doxastic state is to reflect.

Finally, when I say “If you wonder, the capital of Morocco is Rabat” I am not only providing information that is not purely conditional, but information that is not conditional at all. In this case Adams and conditional conditionalization do not apply at all. Instead, Jeffrey conditionalization and the update rule do.

Further examples

This subsection contains three further variations of our example.

Suppose Ida initially believes that Bay will not bring *barrique*-aged wine, that this will be so if it is white, and that this will be so if it is red. In addition, Ida suspends judgment about the color of the wine – non-conditionally, as well as conditional on it being *barrique*-aged and conditional on it not being *barrique*-aged.

\[
\begin{align*}
R(\{\text{red} \& \text{barrique}\}) &= 5 & R(\{\text{red} \& \neg \text{barrique}\}) &= 0 \\
R(\{\text{white} \& \text{barrique}\}) &= 5 & R(\{\text{white} \& \neg \text{barrique}\}) &= 0
\end{align*}
\]

Then Ida’s new grading of disbelief \(R^* \) is such that she continues to suspend judgment about the color of the wine – non-conditionally, as well as conditional on it not being *barrique*-aged if \(n \leq 5 \). If \(n > 5 \), Ida believes that it is white wine if it is not *barrique*-aged. Conditional on it being *barrique*-aged, Ida believes that it is red wine. If \(n < 5 \), Ida continues to believe that it is not *barrique*-aged wine – non-conditionally, as well as conditional on it being red and conditional on it being white. If \(n \geq 5 \), she suspends judgment about the wine being *barrique*-aged non-conditionally, but still believes that it is not *barrique*-aged wine if it is white. Conditional on it being red, she believes it is *barrique*-aged if \(n > 5 \), and suspends judgment about it being *barrique*-aged if \(n = 5 \).

\[
\begin{align*}
R^*(\{\text{red} \& \text{barrique}\}) &= 5 - \min\{n, 5\} & R^*(\{\text{red} \& \neg \text{barrique}\}) &= 0 + n - \min\{n, 5\} \\
R^*(\{\text{white} \& \text{barrique}\}) &= 5 & R^*(\{\text{white} \& \neg \text{barrique}\}) &= 0
\end{align*}
\]
Now suppose Ida initially believes that Bay will bring white wine, that this will be so if it is *barrique*-aged, and that this will be so if it is not *barrique*-aged. Ida suspends judgment about the wine being *barrique*-aged – non-conditionally, as well as conditional on it being white. Conditional on it being red, she believes that it is not *barrique*-aged wine.

\[
\begin{align*}
R (\{\text{red & barrique}\}) &= 9 \\
R (\{\text{white & barrique}\}) &= 0
\end{align*}
\]

Then Ida’s new grading of disbelief \(R^* \) is such that she continues to believe that Bay will bring white wine, that this will be so if it is *barrique*-aged, and that this will be so if it is not *barrique*-aged. She also continues to suspend judgment about the wine being *barrique*-aged – non-conditionally, as well as conditional on it being white. However, if, and only if, \(n \geq 2 \), she gives up her conditional belief that it is not *barrique*-aged wine if it is red. If, and only if, \(n > 2 \), she even adopts the opposite conditional belief.

\[
\begin{align*}
R^* (\{\text{red & barrique}\}) &= 9 - \min \{n, 2\} \\
R^* (\{\text{white & barrique}\}) &= 0
\end{align*}
\]

Finally, suppose Ida initially believes that Bay will bring red wine, that this will be so if it is *barrique*-aged, and that this will be so if it is not *barrique*-aged. In addition, Ida suspends judgment about the wine being *barrique*-aged – non-conditionally, as well as conditional on it being red. However, she believes that it is *barrique*-aged wine if it is white.

\[
\begin{align*}
R (\{\text{red & barrique}\}) &= 0 \\
R (\{\text{white & barrique}\}) &= 7
\end{align*}
\]

Then Ida’s new grading of disbelief \(R^* \) is such that she continues to hold the belief that it is red wine – non-conditionally, as well as conditional on it being *barrique*-aged. Conditional on it not being *barrique*-aged, Ida continues to believe that it is red wine if it is not *barrique*-aged if, and only if, \(n < 11 \). If, and only if, \(n \geq 11 \), Ida give up this conditional belief of hers. If, and only if, \(n > 11 \), she even adopts the opposite conditional belief. Ida continues to believe that it is *barrique*-aged wine if it is white. However, she now also holds this belief non-conditionally, as well as conditional on it being red.

\[
\begin{align*}
R^* (\{\text{red & barrique}\}) &= 0 \\
R^* (\{\text{white & barrique}\}) &= 7
\end{align*}
\]
6.3 In defense of rigidity

There is, once again, a bottle of wine. Let R be the proposition that the wine really is red, and let G be the hypothesis that the glass the bottle is made of makes the wine look red. At time t_0 Ida believes that the wine is not red, but white. Between t_0 and time t_1 she has a visual experience in response to which she believes, at t_1, that the wine is red. Between t_1 and time t_2 Ida’s doxastic state is directly affected a second time. In response, she is certain, at t_2, that the glass makes the wine look red. Since G supposedly undermines the visual experience Ida has between t_0 and t_1, this should make her drop, at t_2, the belief she acquired at t_1. Specifically, it should set her grade of disbelief for R at t_2 back to what it was at t_0.

Weisberg (2015) uses an example like this to argue that rigidity from section 4.3 prevents the update rule from being able to handle “perceptual undermining.” This requires it to be able to undo a belief change that is driven by a perceptual experience – such as coming to believe R – in response to the acquisition of a belief that undermines the trustworthiness of said perceptual experience – such as becoming certain of G. Recall that rigidity is the requirement that $\rho(\cdot | E_k) = \rho_{E_i \rightarrow n_k}(\cdot | E_k)$ for all cells E_k in the experiential partition. In combination with the constraint that $\rho_{E_i \rightarrow n_k}(E_k) = n_k$ it provides a formulation of the update rule.

Weisberg (2015)’s argument trades on the inconsistency of several seemingly plausible constraints. In our example they include:

W0a At t_0 Ida disbelieves R, say $R_0(R) = 7$.

W1a At t_1 Ida believes R, say $R_1(R) = 5$.

W2 At t_2 Ida disbelieves R. Specifically, $R_2(R) = R_1(R | G) = R_0(R) \neq R_1(R)$.

Ida’s grading of disbelief at t_2, R_2, comes from her grading of disbelief at t_1, R_1, by an application of the update rule to the experiential partition $\{G, \overline{G}\}$ with input parameters $R_2(G) = 0$ and $R_2(\overline{G}) = \infty$. The assumption that Ida becomes certain of, rather than just somewhat confident in, G merely simplifies things and is inessential. So are Ida’s particular grades of disbelief. Ida’s grading of disbelief at t_1 is assumed to come from her grading of disbelief at t_0, R_0, by an application the update rule to the experiential partition $\{R, \overline{R}\}$ with input parameters $R_1(R) = 0$ and $R_1(\overline{R}) = 5$. This assumption is essential. So, let us state it explicitly.

W1b R_1 comes from R_0 by an application of the update rule to the experiential partition $\{R, \overline{R}\}$ with input parameters $R_1(R) = 0$ and $R_1(\overline{R}) = 5$.

As mentioned in section 4.2, the experiential partition must contain all of the logically strongest propositions that are directly affected by the experiential event that takes place between \(t_0 \) and \(t_1 \). Therefore, W1b implies that \(R \) and \(\overline{R} \) (and, perhaps, their super-sets or logical consequences) are the only propositions that are directly affected by Ida’s visual experience. The total direct effect of Ida’s visual experience on her doxastic state is that her grades of disbelief change to \(R_1(R) = 0 \) and \(R_1(\overline{R}) = 5 \). Every other difference between her doxastic states at \(t_0 \) and \(t_1 \) is an indirect effect of this experience that is required by the update rule. In particular, it is a consequence of W1b that \(G \) is not directly affected by Ida’s visual experience.

It follows that, between \(t_0 \) and \(t_1 \), Ida does not also form a second-order belief about how she came to believe \(R \) at \(t_1 \). If, at \(t_1 \), Ida has such a second-order belief, then this is either the same second-order belief she already had at \(t_0 \), before she even had the visual experience; alternatively, this second-order belief results from applying the update rule to a conditional belief she has at \(t_0 \), such as: if the wine is red, then I believe so at any time only in response to a visual experience I can trust in forming a belief about the color of the wine.

This means, unless she already does so at least conditionally at \(t_0 \), Ida, at \(t_1 \), does not have an opinion on whether the experience she undergoes between \(t_0 \) and \(t_1 \) is a visual experience, even though that is exactly what it is. For all she believes at \(t_1 \), the experience she just had may not even be a perceptual experience. Indeed, for all she believes at \(t_1 \), what happened between \(t_0 \) and \(t_1 \) may not even be an experience of hers. You and I have this information because of the way the story is told. However, according to W1b, Ida does not.

So far, so good. Now the allegedly bad news. Since it is rigid, the update rule preserves a proposition’s doxastic independence of any member of the experiential partition: if \(A \) is independent of \(R \) (or \(\overline{R} \)) according to Ida’s grading of disbelief at \(t_0 \), \(R_0(A | R) = R_0(A | \overline{R}) \) and \(R_0(\overline{A} | R) = R_0(\overline{A} | \overline{R}) \), then \(A \) is independent of \(R \) (and \(\overline{R} \)) according to Ida’s grading of disbelief at \(t_1 \), \(R_1(A | R) = R_1(A | \overline{R}) \) and \(R_1(\overline{A} | R) = R_1(\overline{A} | \overline{R}) \). These are bad news, Weisberg (2015) alleges, because there is one more constraint.

\[\text{W0b} \ G \text{ is independent of } R \text{ according to } R_0, \text{ i.e. } R_0(G | R) = R_0(G | \overline{R}) \text{ and } R_0(\overline{G} | R) = R_0(\overline{G} | \overline{R}). \]

\[\text{W0b} \text{ says whether the glass makes the wine look red is independent, in the sense of Ida’s grading of disbelief at } t_0, \text{ of whether the wine is red. The independence in W0b is doxastic, not counterfactual or causal or logical or otherwise.} \]
6.3. IN DEFENSE OF RIGIDITY

What precisely doxastic independence consists in depends on one’s theory of (conditional) grades of disbelief. On the theory of chapter 5, it consists in the truth of a complex constellation of counterfactuals whose consequents specify what the agent would believe, and whose antecedents specify whether she received certain information from various sources. For present purposes, a weaker and simpler independence claim that follows from W0b will do. W0b claims, among other things, that, for any time t after t_0, Ida would not change her opinion on G at t, if, between t_0 and t, she came to believe or suspend judgment about R – but no logically stronger proposition – and this was all that directly affected her doxastic state. Whether Ida believes, disbelieves, or suspends judgment about G at t is counterfactually independent of whether she believes, disbelieves, or suspends judgment about R at t, for any t after t_0 such that Ida’s doxastic state between t_0 and t is directly affected only, if at all, by a change in her opinion on G and $\neg G$.

While presumably true, W0b does not claim that whether the glass makes the wine look red is counterfactually independent of whether the wine is red. The counterfactual independence it stipulates is one between two doxastic attitudes, not the contents of these attitudes. Merely assuming that G is logically, causally, and counterfactually independent of R does not guarantee that Ida’s opinion on G at t is counterfactually independent of her opinion on R at t (for any t as above) – let alone that R and G are doxastically independent according to Ida’s grading of disbelief at t_0 in the full sense of W0b. The latter is a substantial assumption about Ida’s doxastic state at t_0.

Let us put things together. In the presence of W0b, W1b implies that G is independent of R according to Ida’s grading of disbelief at t_1. Since doxastic independence is symmetric, R is independent of G according to her grading of disbelief at t_1. This in turn implies that Ida’s grade of disbelief for R at t_2 equals her grade of disbelief for R at t_1, which contradicts W2. Thus, W0, W1, and W2 are inconsistent. According to Weisberg (2015), the culprit is rigidity.

It is not, though. W1b says that Ida’s opinion on R is directly affected by what happens between t_0 and t_1 in such a way that she ends up believing R at t_1. However, it also says that Ida’s opinion on G is not directly affected by what happens between t_0 and t_1. In the presence of W1b, the allegedly plausible W0b adds to this that Ida’s opinion on G is not indirectly affected by what happens between t_0 and t_1 either. Together these constraints thus say that Ida’s opinion on G is neither directly nor indirectly affected by what happens between t_0 and t_1. This is saying that, according to Ida’s grading of disbelief at t_1, G is not a potential underminer for the change to her doxastic state between t_0 and t_1.
Given this consequence of W0b and W1b, W2 clearly should be rejected. It
says that, according to Ida’s grading of disbelief at \(t_1 \), \(G \) undermines the change
to her doxastic state between \(t_0 \) and \(t_1 \) – the exact opposite of what W0b and W1b
imply.

To be sure, there are potential underminers for the visual experience Ida has
between \(t_0 \) and \(t_1 \), and W2 can be satisfied. However, if W2 holds for some
underminer \(U \), then \(U \) must violate W0b or W1b. \(U \) violates W0b if it is not
independent of \(R \) according to \(R_0 \). \(U \) violates W1b if the update rule is applied to
an experiential partition with a cell that is a subset of, or logically implies, \(U \).

If \(U \) violates W0b, but not W1b, Ida’s grade of disbelief for \(U \) is indirectly
affected by the visual experience she has between \(t_0 \) and \(t_1 \). The update rule
governs this indirect way of being affected and delivers Ida’s grade of disbelief
for \(U \) as output. If \(U \) violates W1b, Ida’s grade of disbelief for \(U \) is directly
affected by the visual experience she has between \(t_0 \) and \(t_1 \). In this case the update
rule is applied to an experiential partition with a cell that is a subset of, or logically implies, \(U \). Ida’s grade of disbelief for this cell figures as input to the update rule.

W0b is violated if Ida, at \(t_0 \), holds the following conditional belief: if the wine
is red, then I believe so at any time only in response to a visual experience I can
trust in forming a belief about the color of the wine. In the presence of her newly
acquired belief in \(R \) at \(t_1 \), the update rule requires the acquisition of the second-
order belief, at \(t_1 \), that she believes \(R \) at \(t_1 \) in response to a visual experience she
can trust in forming a belief about the color of the wine. Suppose Ida, at \(t_0 \) and
\(t_1 \), also holds the conditional belief that she cannot trust her visual experience in
forming a belief about the color of the wine if the glass makes the wine look red.
When Ida subsequently becomes certain at \(t_2 \) that the glass makes the wine look
red, her previously acquired belief in \(R \) is undermined. At \(t_2 \), she now believes
that it is not the case that she believed \(R \) at \(t_1 \) in response to a visual experience
she can trust in forming a belief about the color of the wine. Consequently, at \(t_2 \),
she also gives up her belief in \(R \).

W1b is violated if, between \(t_0 \) and \(t_1 \), Ida comes to believe, not merely that
the wine is red, but that the wine is red and she believes so at \(t_1 \) in response to a
visual experience between \(t_0 \) and \(t_1 \) that she can trust in forming a belief about the
color of the wine. If she subsequently, at \(t_2 \), becomes certain, not merely that the
glass makes the wine look red, but that the glass makes the wine look red and she
cannot trust her visual experience between \(t_0 \) and \(t_1 \) in forming a belief about the
color of the wine, her previously acquired belief is undermined. The conjunctive
hypothesis she is now certain of logically contradicts the conjunctive proposition
she previously believed. Consequently, at \(t_2 \), she gives up her belief in the latter.
We see that the update rule can handle perceptual undermining, and that it can do so in more than one way. A change in Ida’s grades of disbelief between t_0 and t_1 in response to a perceptual experience can be undermined by a hypothesis U that is affected by this experience. U can be affected indirectly by not being doxastically independent of all members of the experiential partition according to Ida’s grading of disbelief at t_0, thus violating the allegedly plausible W0b. U can be affected directly by not being logically independent of all members of the experiential partition to which the update rule is applied, thus violating W1b. Which is determined by experience, not methodology.
Bibliography

European Journal for the Philosophy of Science 7, 507-534.

New York: Oxford University Press.

The Open Handbook of Formal Epistemology. Philpapers Foundation, 397-436.

I. Skrupskelis (eds., 1979), The Will to Believe and Other Essays in Popular

ed., Testing Scientific Theories. Minnesota Studies in the Philosophy of

Artificial Intelligence 171, 1-18.

Philosophy of Science 65, 575-603.

[153] Pettigrew, Richard (ms), Bayesian Updating When What You Take Yourself to Learn Might be False. Unpublished manuscript. https://philpapers.org/rec/PETBUW

[159] Raidl, Eric (ms), Comparative Belief and T-Norms: a Model Based on Ordinal Valued Ranking Functions. Unpublished manuscript.

[160] Raidl, Eric & Rott, Hans (ms), Threshold-Based Belief: The View from Ranking Theory. Unpublished manuscript.

